
Examining Novice Programmers’ Software Design

Strategies through Verbal Protocol Analysis*

MARTIN K.-C. YEH
College of Information Sciences and Technology, The Pennsylvania State University, 25 Yearsley Mill Rd, Media, PA, 19063, USA.

E-mail: martin.yeh@psu.edu

This paper describes the change in software design strategies used by novice programmers over the course of one semester

by using verbal protocol analysis. Our participants were nine first-year undergraduate students (novices), and two experts.

Overall, we observed that two types of strategywere used by the novice programmers. Themost common strategyobserved

in our participants, at the beginning of the semester, was aUI-based strategy that focused on system components from the

user’s perspective. This strategy is often overly simplified with little operational and technical details. Another type of

strategy used by novices later in the study was a functional-centered strategy in which novices incorporated programming

concepts into their design.Novices who used the latter strategywere able to providemore operational detail thanwhen the

UI-based strategy was used. We also found that, due to lack of experience, the designs were still very preliminary. In

addition, the novices also exhibited opportunistic design behaviormore often than systematic behavior (i.e., a top-downor

bottom-up strategy) during the semester.We argue that teachingprogrammingknowledge and skills alonewill not develop

students’ software design knowledge effectively.

Keywords: psychology of programming; verbal protocol analysis; software design; human factors

1. Introduction

The first computer programming course (CS1) in

undergraduate education is often important yet

challenging for many freshmen. As a result, the

number of students who graduate with a computer

science degree cannot keep up with the job demand.

A presidential memorandum signed in 2017 has
placed a $200million grant to allow theDepartment

of Education to fund schools to access high-quality

science, technology, engineering, and mathematics

programs, specifically in computer science educa-

tion and coding, to address this crisis. Researchers

have been investigating issues related to teaching

CS1 from many aspects including educational the-

ories, pedagogical approaches, programming lan-
guage features, problem-solving skills, design and

cognition, and gender differences [1].

Research studies have shown that learning to

program is difficult [2] and have identified some of

the root causes of the difficulties such asmemorizing

language syntax and semantics, managing the com-

plexity of a programming project [3], representing

and solving a problem using a programming lan-
guage [4], and continuing in the long process of

learning to program [5, 6]. Influenced by Bloom’s

taxonomy [7], teaching introductory computer pro-

gramming has been primarily organized by starting

with low-level programming skills, then moving

toward higher level design knowledge later. This

pedagogical model exposes novices to only part of

the design task. As indicated by Kinnunen and
Malmi’s study [3], 30 to 50 of percent students

drop out of an introductory computer program-

ming course (CS1) at Helsinki University of Tech-

nology. Moreover, they found that one of the

difficulties for CS1 students is ‘‘managing extensive

unity: for some students, the size of the project work

was difficult to handle’’, which means up to half of

the students felt that programming projects were

too complex for them to handle. Learning software
design skills is an alternative for managing the

complexity of programming projects. Watson and

Li [8] reported a pass rate of 67.7% across 51

institutions in their study. After all, the difficulties

of developing a software project lie not only in

memorizing the syntax or using programming con-

structs correctly but also in dividing and structuring

components in an organized way and managing
project complexity [9–12].

The aim of this study is to address how novice

programmers acquire design strategies and how

these strategies changes through time. Specifically,

this study aims to answer the following research

questions:

� What are the characteristics of novices’ software

design strategies?
� Are novices’ software design strategies similar to

each other?

� Do novices’ software design strategies change

over time?

2. Related work

Many barriers to novice programmers are rooted in

the design of the programming language. Certain

* Accepted 20 November 2017.458

International Journal of Engineering Education Vol. 34, No. 2(A), pp. 458–470, 2018 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2018 TEMPUS Publications.

programming features and statements are hard to

understand and can cause confusion [13]. The

choice of words, symbols, and phrases can be less

intuitive to non-programmers, therefore to novice

programmers as well, than to experienced program-

mers [14]. For example, apparently using ‘‘repeat’’ is
more intuitive than using ‘‘for’’ when it comes to

iteration. Teaching programming with syntactically

simple languages (e.g., Python) can improve com-

prehension and accuracy than using more syntacti-

cally complex languages (e.g., Java). Because of

these programming features, students tend experi-

ence a small number of syntax errors more frequent

than others [15].
Other than the language features and con-

structs, we can attribute novices’ failure in CS1

to lack of software design strategies. It is typical

that novices learn syntax and semantics knowl-

edge but often cannot put the statements together

in a complete and valid program [6]. Novices’ lack

of design strategies and problem-solving skills can

be attributed to the fact that problem-solving
skills are in almost every course description and

yet the teaching components that are specific to

them are vague and abstract [16] and to the way in

which programming textbooks are devoted to

programming knowledge but few problem-solving

skills [17].

Computer programming and software design

are seen as two different types of cognitive activ-
ities but are both essential to software develop-

ment [18]. To learn computer programming is to

learn the symbolic representations and rules of a

programming language; to learn software design is

to apply different types of knowledge to various

problem-solving situations [19]. Software design

skills are regarded as abstract, which include

analysis, and synthesis, and are often addressed
later in the curriculum of computer science. How-

ever, as some studies [16, 20] pointed out, design

knowledge and problem-solving skills can be

domain independent and do not necessarily come

with the acquisition of programming skills. CS1

may experience fewer dropouts and be more

successful by introducing design knowledge early

[21]. Researchers [22, 23] argue that the longer we
defer teaching design knowledge, the more costly it

will become, e.g., the cost of fixing design errors

and the cost of loss of human capital [3]. In

addition, McCracken [24] points out that among

the scarce studies on software design, documenta-

tion on the progress of learning knowledge of

software design is almost nonexistent. Under-

standing the nature of software design and the
development of design knowledge will put us in a

better position to retain learners and improve

computer science education.

3. Research design

Tounderstand novices’ strategies in solving a design

problem, we chose to collect and analyze their

verbal protocols through the talk aloud method

[25] because it can uncover the cognitive process at

the moment of performing a task. Verbal Protocol

Analysis (VPA) has been used in many studies [18,
19], [26–29]. The validity and reliability issues of

using VPA were discussed in [30, 31].

Although novices are the primary target of this

study, we collected experts’ verbal protocols for

comparison. First, experts’ verbal protocols can

serve as comparison data set for interpreting

novices’ cognitive ability. Second, experts’ verbal

protocol can inform coding decisions.

3.1 The Participants

There are two types of participants in this study: two

expert designers and eight novice programmers

(experts and novices hereafter). Novices—seven
males and one female—were college students in

the first Java programming course of two sections

in the same semester at a large research university in

the US. The instructors from both sections were

recruited as experts. They were both doctoral stu-

dents who each had several years of full-time soft-

ware design experience.

3.2 The design task

It is common that software design studies use one or

more design scenarios as problem-solving tasks,

superficial or realistic, and then the participants’

thinking processes are recorded and analyzed based
on different research questions. Some scenarios that

could be solved with less than one hundred lines of

code were criticized for being artificial and unrea-

listic because those problems might not require

complex thinking [18, 32]. To avoid this pitfall, we

designed a scenario that satisfies the following

criteria:

� Complexity: To uncover different cognitive pro-

cesses, the scenario needs to be complex. If the
problem only involves a simple solution such as

counting a running total, then the only observa-

ble cognitive activities are likely to be applying

prescribed or memorized solutions.

� Domain knowledge independence: By domain

knowledge independence we mean the solution

does not depend heavily on domain specific

knowledge typically possessed by experts in the
domain, but not necessarily by novice program-

mers, such as a mathematic calculation, under-

standing some complex physical phenomenon, or

using some specialized algorithms. The scenario

Examining Novice Programmers’ Software Design Strategies through Verbal Protocol Analysis 459

is designed so that novices do not feel intimidated

by the design task.

The scenario is a modified version of design task in

Adelson and Soloway’s study [33] that we call an

Online Library Management System (OLMS). An

OLMS is a library management system that allows
patrons to search for library items, look up their

library records, change personal information,

reserve library items, and renew checked out

items. It also allows librarians to check out library

items for patrons, send notifications, and modify

library items. College students should be familiar

with the concept of OLMS.

In addition to the design scenario, a demographic
survey was also used to record participants’ demo-

graphic data, especially the use of computers in

daily life, and prior design and development experi-

ences. The survey data can help us understand

whether participants transfer knowledge from

other experiences and how their prior knowledge

affects the assimilation and accommodation pro-

cesses [34]. Questions were designed to understand
what computer applications the participants use,

what programming experience they have, and what

programming languages they have used before. For

example, participants who use spreadsheet formu-

las in Microsoft Excel often may possess superior

skills in problem decomposition that may help to

design the OLMS. The survey interview was con-

ducted face-to-face and some additional questions
were asked to gain a deeper understanding of their

computing background based on participants’

responses.

3.3 Procedure

There were three design sessions in one semester

(first, seventh, and fourteenth week of a fifteen week

semester) for this study. Experts only participated in

the first design session. Novices participated in all

three sessions separately. All sessions were video

recorded. Each design session lasted no more than

one hour. In the first session, participants also

completed a demographic survey that was audio
recorded. They were shown a demonstration video

that explained the talk-aloud method.

Participants were given a consent form before

they started. Each participant received the same

design scenario (OLMS) and was asked to create a

design document on paper for such a system so that

the design document could be handed to program-

mers for implementation. The experimenter was in
the same room with the participant to record the

design sessions throughout the experiment. The

experimenter rarely interrupted the subjects except

when the talk aloud was unclear to the experimen-

ter. There was no format requirement on the design

document, which could include diagrams, text

descriptions, etc. Participants were only required

to create a proper design document for implementa-

tion and talk aloud at the same time. They were not

asked to implement the design in any programming

language. Participants were also told they were free
to discard their design and redo it at any time. The

design sessions ended when the participants were

satisfied with their design or they could no longer

improve on or add to the design.

3.4 Data analysis

Transcripts of video recordings are the primary

data. Participants’ design artifacts were used to
assist the analysis as well. Although the participants

were being video recorded, the video camera only

focused on their design document, so facial expres-

sions and gestures were not analyzed. Therefore, the

analysis is a verbal analysis rather than video

interaction analysis. The unit of analysis is the

smallest task in a single context the participants

were attending to during the design process. As
described further below, their cognitive activities

were inferred from the verbal protocols and

described with respect to changes in cognitive

processes.

Adapting from the proposed guidelines by Chi

[35], the following functional steps were taken to

analyze the data after all video recordings were

transcribed:

1. Segmenting protocols by episodes, tasks, and

contents.

2. Developing a coding scheme or formalism.
3. Identifying evidence in the coded protocols that

constitutes a mapping to some chosen formal-

ism.

4. Depicting the mapped formalism for all ses-

sions across all novices.

5. Seeking pattern(s) in the mapped formalism.

6. Interpreting the pattern(s).

All video recordings were first transcribed into

textual protocols, eachofwhichwas then segmented

into episodes based on the context and tasks to
which participants were attending. The reason for

segmenting the protocols by context rather than

proposition is to preserve information that is related

to the single cognitive task. Each episode was then

sorted and labeled as one of two separate tasks:

design-related or non-design-related. From the

design-related episodes, we developed five cate-

gories: problem comprehension, decomposition,
structuring, mental simulation, and evaluation.

Non-design related episodes were not further ana-

lyzed. More detailed information for each category

is described in the section on coding themes later.

Every episode was labeled by a single rater,

Martin K.-C. Yeh460

according to the coding scheme; this rater read the

content and classified the participants’ cognitive

activity. All adjacent episodes with the same cate-

gory label were reviewed again to ensure they

belonged to different episodes. Long episodes also

received another inspection to confirm that they
belonged to one episode rather than multiple epi-

sodes.

Episodes were labeled as non-design-related

when the participants were performing activities

that were not directly related to solving the design

scenario. These could be verbal data related to

general design principles (e.g., button size, interface

layouts), capabilities the designers would like to
make available that are not in the instructions

(e.g., make something similar toMicrosoft Surface,

include the use of touch screen), and conversations

between the participants and the experimenter that

were not related to the current design task.

3.5 Coding themes

The following themes emerged from the existing

literature [19, 26, 28, 36, 37] and from analyzing

experts’ verbal protocols. The process of generating
the coding themes cycles between the analyses of

verbal data and the generation of coding themes

until no more themes emerge. Verbal protocol

episodes were assigned to one coding theme. In

other words, an episode is a segment of verbal

protocol that describes a single event or cognitive

process.

3.5.1 Problem comprehension

Problem comprehension is a cognitive process in
which a set of requirements (problem description) is

translated into an organized internal representation

through existing schema, prior experience, and

intuition. According to schema acquisition theories

[34], encoded knowledge stored in long-term

memory (LTM) is an individualized mental repre-

sentation of a design scenario. Problem comprehen-

sion is the cognitive process of bridging the external
world and the internal representation. A problem

can only be understood by accommodating or

assimilating to existing schemas. Representing a

problem using existing schemas is regarded as the

first stage of the software design.

For novices, the internal representation of the

OLMS at this stage is probably in a preliminary

form. It can be incomplete or incorrect and needs to
be modified and restructured during the design

process. We expect that changing mental models

and re-reading design instructions are both present

throughout the design process.

3.5.2 Decomposition

Decomposition is the process of generating inter-

mediate subsystems, subcomponents, and proce-

dures that together can achieve at least a portion

of the ultimate design goals. There are two different

types of decomposition. First, a designer can divide

a problem into smaller problems so that they are

manageable. This is referred as problem decomposi-

tion. It is a common strategy and can be observed in

both means-ends or difference-reduction problem-

solving processes [5]. For example, a library system

can be divided into tasks that fulfill the needs of the

librarians and the needs of the patrons. Each need

can be broken down further, depending on the

designer. Second, the designer can divide a function

into smaller steps, which is referred as procedural
decomposition. Depending on the design, the

designer can treat a task as a complete piece or use

procedural decomposition to examine its internal

mechanism for reuse or for restructuring. For

example, the function of checking out a library

item can be broken down into checking the avail-

ability of the system, verifying patron identity,

calculating a due date, modifying the library or
the patron’s personal records, etc.

3.5.3 Structuring

Structuring is the process of examining and asso-

ciating subsystems, subcomponents, and proce-

dures that are created from decomposition. Unlike

decomposition that concentrates onone component
and breaks it down into several subcomponents,

structuring concentrates on connecting existing

components. It is often represented by arrows

pointing from one component to another in a

pictorial artifact. Coordination of multiple ideas is

the main goal in this cognitive process. As a result,

structuring requires the designer to recall informa-

tion from several components and to manipulate
their properties in away thatwill achieve one task.A

high level of cognitive load is expected in this

process because multiple components have to be

brought into working memory for processing.

3.5.4 Mental simulation

Mental simulation is a process that uses a hypothe-

tical input and executes it in part of the design to see
if the output is as expected. It is often used as a

method of verifying the product of structuring.

Software designers use two types of mental simula-

tion that require different kinds of knowledge and

lead to different design behavior [37]. The first one is

scenario simulation where designers anticipate the

system output based on user input. A designer can

imagine herself as being a patron using a library
system. Shewill need aworkingmental model in her

memory to ‘‘see’’ and ‘‘operate’’ the system.

Another type of simulation is a functional simulation

where designers execute a partial or complete

Examining Novice Programmers’ Software Design Strategies through Verbal Protocol Analysis 461

system to ensure the sequences of a functional

procedure are coherent, ‘‘stepping through’’ the

execution of programs.

3.5.5 Evaluation

Evaluation is the process of making a judgment

about selecting between solutions. Typically, an

evaluation process includes phases such as identify-

ing the problem, generating a hypothesis, testing

alternatives, and choosing a solution. However,

these phases are not always included in an evalua-
tion process. The designer may decide to postpone

an issue until she has a better understanding. There

can be several benchmarks phrases such as effi-

ciency, consistency, or redundancy in an evaluation

process. Evaluation can also be based on intuition

because we believe that some designers may have

sufficient knowledge that automates the evaluation

process. In such cases, the evaluation process can be
implicit and seems intuitive to the designers.

The above five coding themes are used to categor-

ize episodes segmented from the verbal protocol.

We expect that problem comprehension, decompo-

sition, and structuring activities will constitute the

majority of the total cognitive activities because

they are common in problem-solving situations.

Mental simulation and evaluation require more
complex cognitive ability, may appear later in a

design process, and designers can finish a draft

design without including these activities. Therefor

we predict these activities to occur less frequently.

4. Results

Overall, we found that our participants rely on two
main strategies: user-interface (UI) based strategy

and functional-centered strategy. The UI-based

strategy is one that focuses on the elements of the

UI as an end-user might. Functional-centered strat-

egy, on the other hand, is one that focuses on the

operational implementation of tasks and details.

Table 1 shows the overall sum of episodes generated

by the experts and novices in each session and

suggests that experts are either more thoughtful or

better in articulating their strategies in designing the

OLMS. It also suggests that overall novices become

better at design through the series of tasks over the

duration of the semester and are either becoming

more thoughtful or better at generating verbal

protocols, though not as good as the experts. Fig.
1 shows that the experts engaged inmore evaluation

and less problem comprehension and structuring

than the novices do. The experts seemed to be better

at understanding the problem (a smaller ration of

problem comprehension episodes), created a more

stable design, and tested and evaluated alternatives

more often.

Below are the qualitative description and sum-
mary for each novice.

4.1 Participant 1

According to the artifacts, participant 1’s design

strategy evolved from a simple one into a more

complex one during the semester. He was able not

only to evaluate different options and give ratio-

nales but also to execute more sophisticated mental

simulation later. Learning Java might have helped

him articulate the underlying functionalities of each

task, improving his procedural decomposition, and
enabling his ability to organize and simulate sub-

components. Although the number of episodes of

decomposition (30.2%, 34.4%, and 29.8%) and

structuring (30.2%, 21.9%, and 31.6%) were similar

across all three design sessions (see Fig. 2), the

quality of those cognitive processes did improve.

In the decomposition category, he improved from

Martin K.-C. Yeh462

Table 1.Comparing average number of episodes by expertise and
session (non-design episodes are excluded).

Type of Expertise/Session Average Number of Episodes

Experts (N = 2) 94.5
Novices/Session 1 (N = 8) 41.4
Novices/Session 2 (N = 8) 46.1
Novices/Session 3 (N = 8) 52.9

Fig. 1. Comparison between experts (N = 2) and novices (N = 8) in three design sessions among themes.

centering on the UI to adding more details to the

functionality. In the structuring category, partici-

pant 1 improved frommaking connections based on
prospective users’ behavior to linking components

based on the task. To make both of these improve-

ments possible, we argue, he must be able to

comprehend how components affect the system as

a whole rather than the surface UI features. We see

that participant 1’s strategy changed from UI-

oriented to more functional-centered. It is likely

that programming knowledge enabled this transi-
tion.

4.2 Participant 2

Figure 3 shows that the biggest difference for

participant 2 in learning programming for a seme-

ster was his ability to use mental simulation to

improve design (3%, 36%, and 22%). Compared to

design session one, mental simulation episodes

increased dramatically in sessions two and three,

which shows his strategies are at the functional level
and are no longer isolated components. There were

34 episodes in the first design session, 58 and 60 in

the second and third design sessions respectively. In

the first design session, participant 2 stopped his

design without a reviewing process. Analyzing his

verbal protocols reveals that he did not engage in a

mental simulation process in the first design session.
The mental simulation in the second and third

sessions did change his design. In addition, he

divided a component into two sub-components

and tackled them one by one. He also recognized

two similar functions could be combined while he

mentally simulated the function in session two,

which happened again in session three. These nota-

ble improvements suggest that his strategy is
moving toward functional-centered strategy.

4.3 Participant 3

Fig. 4 shows that the number of problem compre-

hension episodes for participant 3 increased in

session. Analyzing participant 3’s verbal protocols

further revealed that the discrepancy may have

come from using a task list on which he wrote two

categories—patron and librarian—and ‘‘check out

items’’, ‘‘check in items’’ in each category. In the
first and second design sessions, he created a task list

before he started other design activities. Using a

task list allowed him to concentrate on design

activities other than problem comprehension. On

Examining Novice Programmers’ Software Design Strategies through Verbal Protocol Analysis 463

Fig. 2. Design episode percentages for participant 1 in the three design sessions.

Fig. 3. Design episode percentages for participant 2 in the three design sessions.

the other hand, in design session three, he changed

his strategy to walking through UI features, which

showed a ‘‘depth-first’’ approach and can be seen by

the late problem comprehension episodes during

design session three.

Interestingly, Fig. 4 shows a decline of mental

simulation in session three and of evaluation from

session one to session 3. Further analysis suggests
that participant 3 concentrated on non-design a lot

in design session three. When participant 3 was

using a UI-based strategy in session three, his

attention was drawn to usability and consistency.

UI appearance, such as the size or location of

buttons, became important to him and preoccupied

his attention. As a result, other types of cognitive

process were reduced.

4.4 Participant 4

Figure 5 illustrates participant 4’s lack of mental

simulation and evaluation in all three sessions. It is

clear from the transcripts that participant 4 could

not construct a robust mental model by the end of

the study. Although he produced many decomposi-

tion episodes, his inability to design came from

problems with comprehension, decomposition, or

structuring.

‘‘I kind of get the idea but I just don’t know how to put
[it] together.’’ [In design session two]

‘‘I just don’t knowhow todraw this. . . But I get the idea
[of] what you said.’’ [Also in design session two]

Even though he claimed that he understood the

system, his verbal protocol did not support such a

statement.He struggled in understanding the design
scenario and was unable to map the problem state-

ments onto his own design document. He also had

problems with creating new components to assist

him in this design. What he showed in the design

documents was largely based on the instruction

sheet that was provided. For him, designing a

system he had not designed before was challenging,

and he had difficulty stepping away from his pre-
vious database design experience. There was no

observable improvement during the semester in

terms of software design. He had no evaluation

episodes in any of the three sessions and the

number of mental simulation episodes was consis-

tently low (4.8%, 2.3%, and 4.4%).

Participant 4 did try to use object-oriented con-

Martin K.-C. Yeh464

Fig. 4. Design episode percentages for participant 3 in the three design sessions.

Fig. 5. Design episode percentages for participant 4 in the three design sessions.

cepts in his design in the beginning of session three,

something he did not in the session one and two.

Programming knowledge enabled him to design

software systematically at a lower operational

level. Nevertheless, it did not improve his design

knowledge. He seemed to want to change his design
strategy fromUI-based to functional-centered. The

outcome of the design, however, did not seem to

improve.

4.5 Participant 5

Participant 5 demonstrated two different strategies:

a UI-based strategy in session one and a functional-

centered strategy in sessions two and three. The UI-

based strategy allowed him to bypass some of the

functional details of the task while he was beginning

to learn how to program. As shown in Fig. 6 in

design session two, there were very few mental
simulations, whereas several mental simulations

were identified in session three. He stated that he

did not feel comfortable simulating subcomponents

when using a functional-centered strategy while he

had only studied Java programming for about five

weeks at that time.Webelieve, consequently, hewas

not capable of reviewing his own design or selecting

alternatives; whereas in session three when he used a

functional-centered strategy at the end of the seme-

ster, he used mental simulation more to review his

design. However, there is no evidence to confirm or

disapprove this conjecture. It might just be that he

chose not to in session two and opted for self-
reviewing in session three for other reasons.

4.6 Participant 6

Participant 6 used a UI-based mental model in the
first session and a functional-centered strategy in

the second and third sessions. Figure 7 shows that

the increase of decomposition is the most dramatic

and obvious change. As discussed in other partici-

pants’ summaries, a programming-based mental

model requires more low-level cognitive processes,

such as problem comprehension and decomposi-

tion. This phenomenon is depicted in Fig. 7 where
the number of decomposition episodes grows stea-

dily (6, 14, and 33).

Having a UI-based mental model (session one)

caused participant 6 to use mental simulation more

often than having a programming-based mental

model (in sessions two and three). Furthermore,

there was no mental simulation in session two,

Examining Novice Programmers’ Software Design Strategies through Verbal Protocol Analysis 465

Fig. 6. Design episode percentages for participant 5 in the three design sessions.

Fig. 7. Design episode percentages for participant 6 in the three design sessions.

whichwas the first timehehaddemonstratedusing a

programming-based mental model. Although he

did not mention the reason, it was possible that it

was because he had been in Java class for less than

two months. To simulate the system using a pro-

gramming-based mental model would require
executing pseudo-code mentally, which might

have been too challenging for participant 6 as a

novice. In session three, he did demonstrate four

mental simulation episodes.

4.7 Participant 7

Analyzing participant 7’s verbal protocols from all
three sessions indicates that his strategy was rather

opportunistic. In the first session, he used diagrams/

flowcharts to guide his design. In the second session,

he used a UI-based strategy for his design. In the

third session, he used only text descriptions to

describe his design. In all three sessions, he started

from a log-in page, and what followed was very

different, which suggests his opportunistic strategy.
We do not see any indication that learning Java

programming for one semester changed his design

strategy in any consistent way.

In addition, Fig. 8 shows that the greatest change

is the mental simulation in design session two

compared with sessions one and three. This is

because he used a UI-based strategy in session two.

The reason we categorize the strategy as a UI-based

is because the simulation is similar to user walk-
through and no functional details were observed.

4.8 Participant 8

The result of participant 8’s verbal protocols indi-

cates that his strategies were very similar in all three

sessions. According to Fig. 9, the biggest difference

was that there was no problem comprehension and
that the decomposition episodes took up more than

50% of the total episodes in session one. We believe

this was due to his opportunistic design behavior.

He did not demonstrate a systematic strategy either

in following through a function or in breaking up a

component to smaller ones. When we examined

more carefully the episodes of participant 8’s cog-

nitive processes, we found that his design tactics
were centered on arranging and categorizing the

user tasks, which is another indicator of his UI-

based strategy.

Martin K.-C. Yeh466

Fig. 8. Design episode percentages for participant 7 in the three design sessions.

Fig. 9. Design episode percentages for participant 8 in the three design sessions.

‘‘Let’s see, look up overdue items, kind of jumping
aroundhere, goback to this itemhere, um,main library
page.’’ [In design session three]

The missing evaluation episodes for all three ses-

sions can be seen as an indicator that he is just

following the instructions and reorganizing those
tasks. Because those tasks are visible for a person

who is familiar with the library system, it is not

difficult to rearrange those tasks into one design

document.

4.9 Summary

Although the participants demonstrated a variety of
behaviors, their strategies could be categorized as

either UI-based or somewhat functional-centered.

While they addressed components by their function,

the level of detail was similar in both the UI-based

strategy and the functional centered strategy. Based

on the data, we list participants’ strategy in each

session in Table 2.

5. Discussion

Overall, we found novices’ design strategy changes

slowly from a user’s perspective (UI-based) to

developer’s (functional-centered) perspective

during one semester of learning Java programming.

The original research questions are answered in the

next paragraphs.

� What are the characteristics of the novices’ soft-

ware design strategies?

When novices are facing a novel problem, they
rely primarily on prior experience and knowl-

edge. Drawing related knowledge from memory

becomes a logical choice to solve theproblem [34],

[38, p. 195], especially when the problem resem-

bles what is already known. In our study, we

observed the same behavior. In the first design

session, every participant used the database

design concept from their prior database course
(programming was not taught in that course) to

solve the problem. For example, one of the

participants replaced the library system with the

online bookstore he designed in the database

design course. With the limited resources they

have, novices have to find prior knowledge that is

compatible with the problem they face. The

experience of interacting with similar systems is

also activated to assist their design process. So,
when facing problems, they cannot use a thought-

ful and logical way to come up with a solution.

Instead, a template frommemory is what a novice

can use first. Some novices changed their strategy

and adapted their programming knowledge and

concepts. For example, we have seen several

verbal protocols change from ‘‘a patron can

check out books. . .’’ to ‘‘this check-out function
needs to. . .’’ which is more focused on what the

system should accomplish instead of how the user

interact with the system.

Second, novices’ strategies seem unstable and

opportunistic. The OLMS is complex and con-

sists of subsystems that are different from each

other. Solving these subsystems can be indepen-

dent to the system as a whole. Novices seem to be
restricted to a single strategy. For example, the

novices used almost strictly a UI-based or func-

tional-centered strategy in the same design ses-

sion when the experts were able to focus on one

subsystem and use a different approach for dif-

ferent subsystems.

� Are novices’ software design strategies similar to

each other?

We observed that our novices used two design

strategies:UI-based and functional-centered.The

UI-based strategywas common toall participants

because our participants are all college students

who, we argue, have had experience using a

library system. In fact, we observed that every

participant used the UI-based strategy at some

point. Features are treated as blackboxeswithout
details when the participant uses the UI-based

strategy. Although everyone used a UI-based

strategy, each person’s design documents were

different. This variation comes from their percep-

tion of what is important, their experience with

using libraries, and the libraries with which they

interacted. For example, the payment method for

fines, borrowing history, and usability of the
interface are some examples that were mentioned

by the participants but not in the problem sce-

Examining Novice Programmers’ Software Design Strategies through Verbal Protocol Analysis 467

Table 2. Design strategy used in each session by participant

Participant Session 1 Session 2 Session 3

Participant 1 UI-based Functional-centered Functional-centered
Participant 2 UI-based Functional-centered Functional-centered
Participant 3 UI-based UI-based UI-based
Participant 4 UI-based UI-based Functional-centered
Participant 5 UI-based Functional-centered Functional-centered
Participant 6 UI-based Functional-centered Functional-centered
Participant 7 UI-based UI-based Functional-centered
Participant 8 UI-based UI-based UI-based

nario. As a result, the final design documents

vary. In design sessions two and three, some

participants used a functional-centered strategy

with more detailed descriptions related to proce-

dural logic and data structures. Using a func-

tional-centered strategy makes designers focus
on lower level cognitive processes, such as decom-

position and structuring. Nevertheless, many

participants rely on the UI-based strategy while

incorporating a functional-centered strategy.

� Do novices’ software design strategies change over

time?

In terms of design strategy, we observed six out of

eight participantsmoving toward functional-cen-
tered strategy throughout the semester. We

attributed the change in strategy to the fact that

the participants were learning Java program-

ming. For example, starting from session 2,

statements such as ‘‘creating data members’’,

‘‘something should be a class’’, and ‘‘is–a or

has–a relations’’ became more frequent. These

changes suggest that the participants were apply-
ing what they knew from the Java class to the

design task.

Although novices did acquire some form of design

strategies, the strategies need to be polished and

enhanced. From the study, novices have shown the

ability to use programming knowledge in design,
but in a novel way. Tuner and Hill [39] used robot-

based exercises before Java programming task.

They found a correlation between robot-based

approach and programming success. Koulouri et

al. [40] investigated approaches in teaching intro-

ductory programming and found that problem-

solving activities prior to taking a CS1 course did

improve learners programming ability. We argue
that based on our results using programming fea-

tures as a software design strategy should be con-

sidered as part of the CS1 course.

This study investigated, from the perspective of

design, how novices form and use their mental

models and what might cause their mental models

to evolve, with the goal of making software engi-

neering education more effective by understanding
the learners. We are left with a renewed sense of the

importance of helping students understand not only

programming concepts but also software design

processes, and eventually software design mental

models. But, the study raises questions about the

assumption that teaching programming skills alone

will foster better design processes and therefore

better mental models. If novices are to learn com-
plex system design, learning appropriate design

skills (i.e., decomposition and diagramming) and

design patterns [41, 42] would appear to be impor-

tant.

6. Conclusion

In this study, we examined eight novices’ design

strategies over one semester through three design

sessions by recording their think-aloud protocols.

We first categorized the verbal protocols into five

cognitive activities (themes). We further looked at

the themes and their design artifacts and found two
distinct strategies: UI-based strategy and func-

tional-centered strategy. The former is a design

strategy from the user’s perspective and the latter

is one that is from the designer’s perspective.

We also found that novices demonstrated more

programming knowledge in design near the end of

the semester compare to the beginning of learning to

program. Their design strategies also shifted to
more functional-centered than in the beginning of

the semester. Although the novices were not able to

use the new strategy to improve their design drasti-

cally, they moved away from the surface feature to

focus on the detail of a system. By the end of the

study, we observed deeper understanding of the

design task and more robust representations of the

system started to emerge that could be supported by
novices’ creating more detailed decomposition,

spending longer time on design task, and using

more evaluation skills.

However, because the change was inconsistent

and not observed globally, there are opportunities

to improve design knowledge through teaching.

Novices seems to be capable of using their program-

ming knowledge in design. CS1 can benefit from
explicitly teaching design and problem-solving

skills. These skills can be introduced before teaching

the programming content because the skills are not

directly related to a programming language. Strate-

gies such as decomposing the problem or evaluating

solutions should help learners manage their pro-

gramming projects and increase learners’ success

rate in CS1. Different teaching strategies can be
employed and further investigated. For example, a

problem-based learning environment might

increase novices’ performance in reasoning, and

direction instructions such as verb/noun might

help comprehension and decomposition. The

work also shows that when novice learners learn

to program, they rely on what they already know

and what they are taught.
It is felt that the development of cognitive pro-

cesses and design strategies for novices can be

taught and should be addressed early. A model of

explicit instruction on transitioning from the UI-

based to the functional-centered strategy may be

helpful.

Acknowledgements—The author would like to thank Steven
Broomell, Stephen Crocker, Fred Fonseca, Dan Gopstein,

Martin K.-C. Yeh468

Joshua B. Gross, Dan Guzek, Doug Hogan, Kyle Peck, Dave
Popp, Frank Ritter, and Andrey Soares for assisting in data
collection and/or providing feedback to enhance the paper.

References

1. The White House, https://www.whitehouse.gov/the-press-
office/2017/09/25/memorandum-secretary-education, accessed
13 October 2017.

2. A. McGettrick, R. Boyle, R. Ibbett, J. Lloyd, G. Lovegrove
and K. Mander, Grand challenges in computing: Educa-
tion—a summary, The Computer Journal, 48(1), 2005, pp.
42–48.

3. P. Kinnunen and L. Malmi, Why students drop out CS1
course?, Proceedings of the 2006 International Workshop on
Computing Education Research, Canterbury, United King-
dom, 2006, pp. 97–108.

4. B. Du Boulay, Some difficulties of learning to program,
Journal of Educational Computing Research, 2(1), 1986, pp.
57–73.

5. J. R. Anderson, Cognitive Psychology and its Implications,
5th ed., W. H. Freeman and Company, New York, 1999.

6. L. E. Winslow, Programming pedagogy—A psychological
overview, SIGCSE Bulletin, 28(3), 1996, pp. 17–22.

7. B. S. Bloom,M.D. Engelhart, E. J. Furst, W. H. Hill and D.
R. Krathwohl, Taxonomy of Educational Objectives, Hand-
book I: The Cognitive Domain. David McKay Co Inc., New
York, 1956.

8. C. Watson and F. W. Li, Failure rates in introductory
programming revisited, Proceedings of the 2014 Conference
on Innovation & Technology in Computer Science Education,
Uppsala, Sweden, 2014, pp. 39–44.

9. E. Soloway, Learning to program = learning to construct
mechanisms and explanations,Communications of the ACM,
29(9), 1986, pp. 850–858.

10. J. C. Spohrer and E. Soloway, Novice mistakes: Are the folk
wisdoms correct?,Communications of the ACM, 29(7), 1986,
pp. 624–632.

11. J. G. Spohrer and E. Soloway, Analyzing the high frequency
bugs in novice programs, in E. Soloway, B. Shneiderman,
and S. Iyangar (eds), Empirical studies of programmers: First
workshop, Greenwood Publishing Group Inc., Westport,
CT, 1986, pp. 230–251.

12. D. Teague and P. Roe, Collaborative learning: Towards a
solution for novice programmers, Proceedings of the Tenth
Conference on Australasian Computing Education, Wollon-
gong, NSW, Australia, 2008, pp. 147–153.

13. D. Gopstein, J. Iannacone, Y. Yan, L. A. DeLong, Y,
Zhuang, M. K.-C. Yeh and J. Cappos, Understanding
Misunderstandings in Source Code, Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engi-
neering, Paderborn, Germany, 2017, pp. 129–139.

14. A. Stefik and S. Siebert, An empirical investigation into
programming language syntax, ACM Transactions on Com-
puting Education, 13(4), 2013, p. 19.

15. P. Denny, A. Luxton-Reilly and E. Tempero, All syntax
errors are not equal, Proceedings of the 17th ACM Annual
Conference on Innovation and Technology in Computer
Science Education, Haifa, Israel, 2012, pp. 75–80.

16. S. J. Kimmel, H. S. Kimmel and F. P. Deek, The common
skills of problem solving: From program development to
engineering design, International Journal of Engineering
Education, 19(6), 2003, pp. 810–817.

17. A. Robins, J. Rountree and N. Rountree, Learning and
teaching programming: A review and discussion, Computer
Science Education, 13(2), 2003, pp. 137–172.

18. R.Guindon,Designing the design process: Exploring oppor-
tunistic thoughts, Human-Computer Interaction, 5(2), 1990,
pp. 305–344.

19. R. Jeffries, A. A. Turner, P. G. Polson, and M. E. Atwood,
The processes involved in design software, in J. R. Anderson
(eds), Cognitive skills and their acquisition, Lawrence
Erlbaum Associates, Ed. Hillsdale, NJ, 1981, pp. 255–283.

20. V. Goel and P. Pirolli, The structure of design problem
spaces, Cognitive Science, 16(3), 1992, pp. 395–429.

21. P. Machanick, Teaching Java backwards, Computers &
Education, 48(3), 2007, pp. 396–408.

22. B. Curtis, H. Krasner and N. Iscoe, A field study of the
software designprocess for large systems,Communications of
the ACM, 31(11), 1988, pp. 1268–1287.

23. R. Guindon, The process of knowledge discovery in system
design, in G. Salvendy and M. J. Smith (eds), Designing and
using human-computer interfaces and knowledge based sys-
tems, Elesver, Amsterdam, 1989, pp. 727–734.

24. W.M.McCracken, Research on learning to design software,
in S. Fincher andM. Petre (eds), Computer science education
research, Taylor & Francis, London, 2004, pp. 155–173.

25. D. Gentner, Mental models, Psychology of, in P. Bates and
N. Smelser (eds), International encyclopedia of the social &
behavioral sciences, Elsevier, Amsterdam, 2002, pp. 9683–
9687.

26. R. Brooks, Towards a theory of the cognitive processes in
computer programming, International Journal Man-
Machine Studies, 9(6), 1977, pp. 737–751.

27. M. T. Chi, M. Bassok, M. W. Lewis, P. Reimann and R.
Glaser, Self-explanations: How students study and use
examples in learning to solve problems, Cognitive Science,
13(2), 1989, pp. 145–182.

28. V. Renumol, D. Janakiram and S. Jayaprakash, Identifica-
tion of cognitive processes of effective and ineffective stu-
dents during computer programming, ACMTransactions on
Computing Education, 10(3), 2010, p. 10.

29. C. J. Atman and K. M. Bursic, Verbal protocol analysis as a
method to document engineering student design processes,
Journal of Engineering Education, 87(2), 1998, pp. 121–132.

30. K. A. Ericsson and H. A. Simon, Verbal reports as data,
Psychological Review, 87(3), 1989, p. 215.

31. K. A. Ericsson and H. A. Simon, Protocol Analysis. MIT
Press, Cambridge, MA, 1993.

32. W. Visser and J.-M. Hoc, Expert software design strategies,
in J.-M. Hoc, T. R. G. Green, R. Samurcay, and D. J.
Gilmore (eds), Psychology of programming, Academic
Press, London, 1990, pp. 235–250.

33. B.Adelson andE. Soloway,The role of domain experience in
software design, IEEETransactions onSoftwareEngineering,
11(11), 1985, pp. 1351–1360, 1985.

34. D. E. Rumelhart andD. A. Norman, Accretion, tuning, and
restructuring threemodes of learning, in J.W.Cotton andR.
L. Klatzky (eds), Semantic factors in cognition, Lawrence
Erlbaum Associates, Hillsdale, NJ, 1978.

35. M. T. H. Chi, Quantifying qualitative analyses of verbal
data: A practical guide, The Journal of the Learning Science,
6(3), 1997, pp. 271–315.

36. R. Guindon, H. Krasner, and B. Curtis, Breakdowns and
processes during the early activities of software design by
professionals, in G. M. Olson, S. Sheppard, and E. Soloway
(eds), Empirical studies of programmers: second workshop,
Ablex Publishing Corp., Norwood, NJ, 1987, pp. 65–82.

37. S. Letovsky, J. Pinto, R. Lampert and E. Soloway, A
cognitive analysis of a code inspection, in G. M. Olson, S.
Sheppard, and E. Soloway (eds), Empirical studies of pro-
grammers: second workshop, Ablex Publishing Corp., Nor-
wood, NJ, 1987, pp. 231–247.

38. M. P. Driscoll, Psychology of Learning for Instruction, 2nd
ed. Allyn & Bacon, Boston, MA, 2000.

39. S. Turner and G. Hill, Robots in problem-solving and
programming, 8th Annual Conference of the Subject Centre
for Information and Computer Sciences, Thessaloniki,
Greece, 2007, pp. 82–85.

40. T. Koulouri, S. Lauria, and R. D. Macredie, Teaching
introductory programming: a quantitative evaluation of
different approaches,ACMTransactions on Computing Edu-
cation, 14(4), 2015, p. 26.

41. A. Chatzigeorgiou, N. Tsantalis, and I. Deligiannis, An
empirical study on students’ ability to comprehend design
patterns, Computers & Education, 51(3), 2008, pp. 1007–
1016.

42. G. Kolfschoten, S. Lukosch, A. Verbraeck, E. Valentin and
G.-J. deVreede,Cognitive learning efficiency through the use
of design patterns in teaching,Computers&Education, 54(3),
2010, pp. 652–660.

Examining Novice Programmers’ Software Design Strategies through Verbal Protocol Analysis 469

MartinK.-C.Yeh is an assistant professor in theCollege of Information Sciences andTechnology at the Pennsylvania State

University. His research interests range from software engineering to cognitive modeling of users to study learning and

interfaces. He is also interested in developing and evaluating new technology, particularly mobile devices, to help people

learn.

Martin K.-C. Yeh470

