It’s the Psychology Stupid: How Heuristics Explain
Software Vulnerabilities and How Priming Can llluminate
Developer’s Blind Spots

Daniela Oliveira Marissa Rosenthal
Justin Cappos*

Kuo-Chuan Yeh*

Nicole Morin'
Yanyan Zhuang?

University of Florida Bowdoin College! Pennsylvania State University” NYU?

daniela@ece.ufl.edu, mrosenth,nmorin @bowdoin.edu, yeh@cse.psu.edu, jcappos,yyzh@nyu.edu

ABSTRACT

Despite the security community’s emphasis on the importance of
building secure software, the number of new vulnerabilities found
in our systems is increasing. In addition, vulnerabilities that have
been studied for years are still commonly reported in vulnerabil-
ity databases. This paper investigates a new hypothesis that soft-
ware vulnerabilities are blind spots in developer’s heuristic-based
decision-making processes. Heuristics are simple computational
models to solve problems without considering all the information
available. They are an adaptive response to our short working mem-
ory because they require less cognitive effort. Our hypothesis is that
as software vulnerabilities represent corner cases that exercise un-
usual information flows, they tend to be left out from the repertoire
of heuristics used by developers during their programming tasks.

To validate this hypothesis we conducted a study with 47 de-
velopers using psychological manipulation. In this study each de-
veloper worked for approximately one hour on six vulnerable pro-
gramming scenarios. The sessions progressed from providing no
information about the possibility of vulnerabilities, to priming de-
velopers about unexpected results, and explicitly mentioning the
existence of vulnerabilities in the code. The results show that (i)
security is not a priority in software development environments, (ii)
security is not part of developer’s mindset while coding, (iii) devel-
opers assume common cases for their code, (iv) security thinking
requires cognitive effort, (v) security education helps, but devel-
opers can have difficulties correlating a particular learned vulnera-
bility or security information with their current working task, and
(vi) priming or explicitly cueing about vulnerabilities on-the-spot
is a powerful mechanism to make developers aware about potential
vulnerabilities.

1. INTRODUCTION

Over the past decades, the security community has spent tremen-
dous effort in emphasizing security awareness and building secure
software. However, the number of new vulnerabilities keeps in-
creasing in today’s software systems. In 2013, the Symantec In-
ternet Security report has announced that 5291 new vulnerabilities
occurred in 2012, 302 more than in 2011 [1]. Despite the fact that
vulnerabilities have been the focus of the security community for
decades, frequently observed vulnerabilities such as buffer over-
flows and SQL injections are still repeatedly reported. With to-

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

ACSAC’14 December 08 - 12 2014, New Orleans, LA, USA

Copyright 2014 ACM 978-1-4503-3005-3/14/12...$15.00
http://dx.doi.org/10.1145/2664243.2664254.

296

day’s increasingly diverse software, and a society significantly de-
pendent on networked computer systems, the inability to effectively
handle software vulnerabilities will result in more serious security
breaches in the future.

Facing this huge number of security vulnerabilities, the research
community has chosen to criticize the current security education
and developers. As an example, SQL injection has caused issues
that commonly lead to password database disclosures. When refer-
ring to the cause for SQL injection, Bruce K. Marshall stated that
“[T]he popularity of the language has led to the rapid deployment
of PHP sites and PHP-based content management systems by peo-
ple who lack an education in web application security. Even though
the risk of SQL injection in PHP should be fairly well understood,
some organizations still end up deploying code that doesn’t imple-
ment proper security controls” [2]. The frequent condemnation of
security education and criticism on software developers, however,
do not help to reason about the root causes of security vulnerabili-
ties.

We argue that the nature of increasingly insecure software with
well-studied vulnerabilities does not lie in the lack of security ed-
ucation from the developer’s part. We seek to examine the hy-
pothesis that software vulnerabilities are blind spots in developer’s
heuristic-based decision-making processes. Heuristics are compu-
tational models that do not use all information available to reach a
particular decision or course of action. During their everyday pro-
gramming tasks, developers use heuristics, either consciously or
unconsciously, that do not include security or vulnerability infor-
mation. As software vulnerabilities represent uncommon cases not
completely understood by developers and exercise unusual infor-
mation flows, they are usually left out from developer’s heuristics.
In spite of that, decision-making is adaptive. Therefore, another
hypothesis we investigate in this paper is whether priming develop-
ers on the spot about the possibility of vulnerabilities will change
their mindset towards security and make security-thinking part of
their repertoire of heuristics.

Despite the abundant security tips for safe programming [3], de-
velopers may not be considering these security practices when writ-
ing code in their daily tasks. Psychological research documents that
humans often engage in heuristic-based decision-making processes
that are due to the limitations in a human’s working memory ca-
pacity [4, 5]. Heuristics occur when a human is facing complex
problems with a large amount of information, and thus she tends to
make simplified, sub-optimal decisions regardless of the rich infor-
mation available [6, 7]. Although heuristics is an adaptive tool, they
can lead to software faults and deleterious consequences. Seeking
security-related information while coding is usually not the case
in software development. When programming, developers tend to
focus on their immediate goals that usually involve functional and
performance requirements. As a result, they do not expect the pos-
sibility of an adversary exploiting their code [8].

To validate this hypothesis, we conducted an IRB-approved study
with 47 participants from a variety of backgrounds, including de-

velopers from the industry, CS undergraduate and graduate stu-

dents, CS faculty, software developer managers, and software testers.

The participants were asked to work on six programming scenar-
ios with software vulnerabilities in a survey session. The session
lasted approximately one hour. Our study leveraged psychological
manipulation [9] where participants did not know in advance that
the study was security-related, and were progressively cued about
possible vulnerabilities. The goal was to validate the hypothesis
that security information is usually not part of developers’ heuris-
tic thinking during their everyday programming; however, security
information can become part of their repertoire of heuristics when
developers are cued about the possibility of vulnerabilities. Analy-
sis of participant’s answers showed that stronger cues have stronger
effect on developers.
In summary, this paper has the following contributions:

1. We present a hypothesis that views software vulnerabilities
as blind spots in developers’ heuristic-based decision-making
processes, and propose a paradigm that advocates security in-
formation and education should reach developers when they
need it, on the spot.
We conduct an IRB-approved study with 47 developers to
validate our hypothesis and show that 60% of the developers
thought that when primed about security they become aware
of the security implications of their code, and 83% of the
developers thought that explicitly mentioning the possibility
of vulnerabilities on the spot changed their mindset towards
security.

3. We present a thorough discussion of developers’ interview
answers that are analyzed with techniques widely used in the
social, behavioral and economic sciences. The results show
that (i) security is not a priority in software development en-
vironments, (ii) security is not part of a developer’s mindset
while coding, (iii) developers assume common cases for their
code, (iv) security thinking requires cognitive effort, (v) se-
curity education helps, but developers can have difficulties
correlating particular learned vulnerability or security infor-
mation with their working task, and (vi) priming or explicitly
cueing about vulnerabilities on-the-spot is a powerful mech-
anism to make developers aware of the potential vulnerabili-
ties.

This paper is organized as follows. Section 2 describes humans’
heuristic-based decision making processes and how they relate to
software vulnerabilities. Section 3 presents the study method to
validate our hypothesis. In Section 4 we detail the scenarios pre-
sented to the developers during our study, and the use of psycho-
logical manipulation. Section 5 presents the results obtained, and
the Section 6 discusses these results and provides our recommen-
dations for developers. Section 7 gives an overview of related work
and Section 8 concludes.

2. HEURISTICS AND VULNERABILITIES

Psychology research has documented that during evolution, hu-
mans have become hardwired for shortcut and heuristic-based de-
cision making processes [4, 5]. Heuristics are cognitive processes
that humans use to make decisions and perform tasks [10]. They are
simple computational models that allow one to quickly find feasible
solutions and that do not necessarily use all information available.
Heuristics rely on core human mental capacities, such as recog-
nition, recall and imitation [11]. They represent an alternative to
optimization models that use all information available and always
compute the best solution.

As psychological processes, heuristics are very useful as they re-
quire less cognitive effort for a particular task. Humans have a short
working memory, which makes cognitive processes difficult when
too much information, possibilities, or choices are available [12].
In such cases, humans employ sub-optimal decision-making pro-
cesses that can lead to mistakes [6, 7]. This argument is reinforced
by Zipf’s principle of least effort [13], which states that humans

297

use as little effort as necessary to solve a problem. Heuristics are
adaptive responses to human’s short working memory. They have
high predictive accuracy when information is scarce, but can lead
to severe biases and errors in decision making or ensuring the cor-
rectness of tasks [10, 11].

Such heuristic-based decision-making processes also largely af-
fect software security. According to Thorngate, humans tend to
ignore information in heuristics because they do not notice cer-
tain issues of a particular problem, or there are small or infrequent
decrements in reward that result from their ignorance or misuse of
relevant information about the problem in hand [10]. In software
development, this is reflected by the fact that functional and per-
formance requirements usually have higher priority. Kieskamp and
Hoffrage [14] also argue that under time pressure, a common Situ-
ation in software development, humans are likely to adopt heuris-
tics that are even simpler, and do not require much integration of
information. In spite of that, a decision-maker is adaptive such
that through proper feedback they can improve their repertoire of
heuristics. However, there also exists a forgetting process where a
particular piece of knowledge or strategy can be gradually wiped
out from the decision-maker’s repertoire of heuristics, if not prop-
erly reinforced.

Our hypothesis is that software vulnerabilities are blind spots
in developer’s heuristic-based decision-making processes. Soft-
ware vulnerabilities are introduced mostly because developers use
heuristics to make decisions in their everyday tasks. When devel-
opers constantly make sub-optimal decisions, consciously or un-
consciously, they are mostly concerned about finding a solution or
an efficient solution to a particular problem. However, as software
vulnerabilities often lie in the corner cases and unusual information
flows, they tend to be left out from developers’ heuristics. How-
ever, when properly primed about security, on the spot and with
cues correlating with their current programming tasks, developers
can properly develop a security mindset for the task at hand.

3. DEVELOPER’S STUDY METHOD

Forty-seven participants were tested in this study in exchange for
a gift certificate. Participants were invited via direct e-mail sent to
software development companies, universities and colleges in the
United States and abroad.

3.1 Source Materials

Stimuli consisted of programming scenarios that included soft-
ware vulnerabilities and that tested developer’s understanding on
the issue. The vulnerabilities in each programming scenario were:
buffer overflow [15], cross-site scripting (XSS) [16], SQL injec-
tion [17], Python Secure Socket Layer (SSL) [18], time of check
to time of use (TOCTTOU) [19], and brute force password exhaus-
tion vulnerabilities [20]. Each scenario is an exhibit question in
Qualitative Research [21], which sharpens the respondents’ con-
centration by asking them to respond to a specific statement, story
or artifact. A scenario is a short code snippet with comments that
formulates the underlying vulnerability in an focused way, exer-
cising it, adding all necessary context, and removing unnecessary
noise. Noise was removed in a careful way, as vulnerabilities are
often located in hidden cases and also in unusual information flows.
Example programming scenarios will be given in Section 4.

3.1.1 Information Conditions

The scenarios are presented to developers with different informa-
tion conditions: (i) with no information about security or vulnera-
bilities (controlled condition), (ii) with implicit information about
possible unexpected results in code (priming condition), and (iii)
with explicit information about the existence of vulnerabilities in
code (explicit condition). Examples of these information condi-
tions in our study are given in Section 4.

3.1.2 Pilot Study

Before inviting developers and distributing the survey, a pilot
study was performed with undergraduate students from one of the

author’s institutions. In this study, students were asked to answer
questions for each scenario and provide feedback in a live follow-
up interview about their experience. Follow-up interviews were
tape-recorded and included a thorough debrief on each vulnerabil-
ity. Based on their feedback, the scenarios were adjusted to max-
imize their clarity. An online survey was then created that con-
sisted of the six finalized scenarios, followed by open-ended ques-
tions that reflected the interview questions in the pretest. Stimulus
presentation and the collection of responses were controlled using
Qualtrics platform for online data collection [22].

3.2 Procedure of Study

Participants were instructed to answer questions in the survey
as accurately and thoroughly as possible, without knowing that the
study was security-related. To ensure that subjects were not suspi-
cious of the aim of our study, the survey employed psychological
manipulation techniques [9] that involved a cover story presented
in a consent form signed by the participants. The cover story ex-
plained that this was a study of how developers think about pro-
gramming in general, so that researchers of this study could build
mental models about typical developers. They were informed that
in the survey, there would be six programming scenarios and gen-
eral questions about snippets of code, and they would be asked to
perform small programming tasks to modify the code.

Subjects were not restricted to a particular time frame to com-
plete the survey. However, they were informed that once they com-
pleted one scenario, they would not be able to return to previous
pages. Following the last scenario, subjects responded to open-
ended questions that addressed the manipulation of information,
the subjects’ personal experience with computer security, and their
familiarity with each of the tested vulnerabilities. The examples
of open-ended questions are given in Section 4. To leverage the
educational purposes of the study, subjects were debriefed on each
security vulnerability.

3.3 Design

Psychological research experiments typically have both depen-
dent and independent variables. In this study, the dependent vari-
ables are the participants’ survey scores and their answers to the
open-ended debrief questions. There are also two independent vari-
ables that are varied and manipulated by the experimenter in this
study. The first one was the vulnerability scenario of a code snippet.
The second is the level of information (condition) emphasized by
each question and could be no information, implicit or explicit in-
formation. In a psychology experiment, researchers are interested
in how the changes in an independent variable cause changes in
the dependent variable [9]. Two one-way Analyses of Variance
(ANOVASs) [23] across the three levels of information and six vul-
nerability scenario types were conducted on data accuracy.

Scenarios in the controlled and priming (implicit) conditions con-
tained questions that addressed user input, code execution, and
code modification. In the priming condition, subjects answered
an additional question that asked whether unexpected results could
arise from the presented snippet of code. This question aimed to
prime participants to think about security-related vulnerabilities. In
the explicit condition, subjects were cued to look for the vulnera-
bility and were directly told that the code had a security flaw.

The order of the scenarios was randomized for each participant.
However, because the manipulation intended for subjects to change
their mindset, information conditions, or whether the scenario was
in the controlled, implicit, or explicit condition, were presented to
all participants in a specific order. The first two scenarios provided
no information about the corresponding security flaws (controlled
condition), the second two scenarios provided implicit information
(priming) about the corresponding security flaws, and the last two
scenarios explicitly addressed the fact that the snippets of code had
security flaws (explicit).

298

1. <? php

2. session_start();

3.

4, if(!isset (Suserinfo[$_POST[’username’]])) {
5. // Invalid username

6. echo "Authentication failed."

7.}

8. else {

9.

10. if (Suserinfo[$_POST[’username’]] ==
11. md5 ($_POST[’'password’ 1)) {
12. // Successful authentication

13. echo "Welcome to Bank ABC."

14. }

15. else {

16. // Invalid login

17. echo "Login failed."

18. }

19. }

20. // rest of the script

21. 2>

Figure 1: Brute force password exhaustion vulnerability scenario.

4. THE VULNERABILITY SCENARIOS

Each developer session exercised six vulnerabilities, where five
are well-known and studied by the security community for years
and one is relatively new, initially reported in vulnerability databases
in 2013. In this section, we describe our IRB-approved study with
these vulnerabilities, our psychological manipulation through dif-
ferent information conditions, and how the results are measured.

The five well-know vulnerabilities are buffer overflow [15], cross-
site scripting (XSS) [16], SQL injection [17], time-to-check-to-
time-to-use (TOCTTOU) [19], and finally an authentication vul-
nerability which can lead to brute-force password or dictionary at-
tacks [20].

Figure 1 illustrates the brute force authentication vulnerability
scenario. Developers were asked to consider a hypothetical bank-
ing application that requires users to authenticate themselves. A
user is prompted to provide a user name and a password, which
are verified before any access is granted. Developers were told that
knowledge of PHP was not required, and the snippet of PHP code
represented a simplified version of this authentication process. The
scenario also mentioned that method i sset determines whether a
variable is set and is not NULL.

The code is vulnerable because different messages are given for
valid and invalid user login, as shown in line 6, 13 and 17 in Fig-
ure 1. This helps an adversary to discover valid user names. In the
controlled condition, developers were asked the following warm-
up questions: What is the user input to this program? What hap-
pens when this code executes? These warm-up questions were
present in all the scenarios in the controlled condition. Then the
developer was asked to modify this code to allow a user to log in
as guest if she enters a user name of guest. In this situation, the
user will have restricted access to the system resources. The de-
veloper was told to consider places that might be improved while
the developer was modifying the code. The goal was to give devel-
opers who were aware of any security concerns an opportunity to
address them. This way, we also verify the developer’s willingness
or motivations to improve the code.

The last vulnerability is about the Python SSL API, which makes
web applications vulnerable to man-in-the-middle attacks [18]. An
example is given in Figure 2. In the figure, function wrap_socket
is used by a client to open an SSL connection with a server. Nor-
mally when an application (SSL client) checks the server’s SSL cer-
tificates, it ensures that there is a chain-of-trust from a root certifi-
cate (preloaded onto the system) to the provided certificate. While
the end-to-end encryption of SSL provides integrity and confiden-
tiality, certificate checking validates the authenticity of the server
site. However, function wrap_socket in Python does not vali-
date certificates received from the server. As a result of this vulner-
ability, any malicious party can provide a certificate claiming to be
an official website, and the fake certificate will be trusted.

1. import socket, ssl

2.

3. sock = socket.socket ()

4. sock.connect ((HOSTNAME, PORTNUMBER))

5. # wrap socket to add SSL support

6. ssl_sock = ssl.wrap_socket (sock,

7. cert_regs = ssl.CERT_REQUIRED,

8. ca_certs =
"/etc/ssl/certs/ca-certificates.crt")

9.

10. ...

11. print ("Successful SSL connection")

12. # transfer data between client and server

13. ...

14. ssl_sock.close()

Figure 2: The Python SSL vulnerability scenario.

Figure 2 shows the Python SSL scenario in the survey. Devel-
opers first received basic information about how SSL works, and
then were asked to consider an SSL client written in Python. In
the priming condition, developers were asked the following ques-
tions: Could a developer experience unexpected results when run-
ning such code? What could be examples of these unexpected re-
sults and where do they appear in the code?

In the explicit condition for all scenarios, subjects were asked
the following questions: This code has a vulnerability (security
flaw) that allows attackers to violate certain security policies of the
[web application/program]. Can you pinpoint the problem? Please
describe the vulnerability and where it occurs. Why do you think
that developers have problems pinpointing this particular problem?

Following the explicit conditions, subjects responded to open-
ended questions that addressed the manipulation of information:
(i) Were all the programming scenarios and associated questions
clear? If not, what confused you? (ii) When you were asked to
modify the code, were you suspecting to find vulnerabilities? If
not, why do you think you missed it? (iii) Did asking you about
unexpected results cue you to think about potential vulnerabilities
in the code? (iv) Did explicitly asking you to find the vulnerability
Jforce you to change your approach while examining the code and
answering the subsequent questions? If so, explain.

The participants were also asked about their personal experience
with computer security (have you taken computer security classes?
If so did these classes help you pinpoint vulnerabilities in the snip-
pets of code?), their familiarity with each of the tested vulnerabil-
ities (Are you familiar with [the exemplified] vulnerabilities? If so
please explain how your knowledge about these common vulner-
abilities influenced or did not influence how you approached the
scenarios?), and whether they will be more aware of these vulner-
abilities when developing new projects (Now that you are aware
of the different vulnerabilities, do you think you will think about
vulnerabilities in future programming tasks?). To leverage the edu-
cational purposes of the study, subjects were thoroughly debriefed
on each of the security vulnerabilities and subsequently debriefed
on the true purpose of the study. Due to space limitations, only two
scenarios are shown in Figures 1 and 2.

In order to ensure a consistent measure for the accuracy of sub-
jects’” responses, each response was graded by at least two experi-
menters. Accuracy was measured for each response on a scale from
zero (i.e., completely incorrect) to two (i.e., completely correct). A
score of one signified an incomplete but correct response to the
question, whereas a score of two indicated that the subject had cor-
rectly pinpointed the specific vulnerability. A separate score was
included for each question signifying whether or not participants
modified the code in a way that addressed the particular security
vulnerability.

S. RESULTS AND ANALYSIS

A total of 84 developers agreed to take the survey. From this
set, 47 surveys were considered in this section as the respondents
worked through all six scenarios and answered all the debrief open-
ended questions. Table 1 shows the distribution of the participants

299

Occupation Percentage
Developers from the industry 60%
Students (senior undergraduates and 239
graduate students) ¢
CS Faculty 6%
Other occupations related to software 11%
development (e.g., managers and testers) ©

Table 1: Participant’s occupations.

Educational background Percentage
Doctoral degree 22%
Master’s degree 34%
4-year college degree 38%
Not completed 4-year college degree 6%

Table 2: Participant’s educational background.

according to their occupation, and Table 2 describes their educa-
tional backgrounds. Participants ranged from 20-52 years of age
(M = 31) and approximately 81% of participants were male and
19% were female. The majority of the participants (86%) have
a degree in computer science or related majors. All participants
who reported not having a degree are senior undergraduate students
working towards a degree. Approximately 66% of the participants
have never taken a security class in college or any type of security
training in the course of their careers.

5.1 Statistical Results

This subsection presents the statistical results of our study. The
results described in this section use analysis of variance (ANOVA)
to analyze the differences between group means and their associ-
ated procedures (such as "variation" among and between groups)
[23]. ANOVA is a generalization of t-tests to more than two groups.
A two-sample t-test is a statistical test that examines whether two
samples are different. It is commonly used when the variances
of two normal distributions are unknown and when an experiment
uses a small sample size. Both ANOVA and t-tests compute the
ratio between the obtained difference between the means and the
mean difference expected by chance. The goal is to determine
whether the obtained difference between means are larger than ex-
pected by chance, which yields a larger F value.

In ANOVA, the denominator of the F-ratio is the error variance
or mean squared error (MSe), and measures how much variance is
expected if there are no systematic treatment effects and no indi-
vidual differences contributing to the variability of scores. A value
of p < 0.05 means that the variation seen due to the manipulation
of the variables has a probability of at least 95% certainty. The
Pearson correlation () measures the degree of linear relationship
between two variables.

5.1.1 Variables Used in Analysis

Table 4 summarizes the frequencies and mean for the variables
used in this analysis. Total score is the maximum score that a par-
ticipant could have obtained on a session. The Missing line repre-
sents particular questions within a scenario that were not answered
by the participants. The Explicit variable indicates whether the re-

N | Min | Max | Mean | Std. Dev.
Gender 47 1 2 1.19 0.398
Age 47 | 20 52 | 30.96 7.049
Occupation 47 1 4 1.68 1.002
Level of Education | 47 1 8 4.68 1.200
Total Score 40 [16 36 27.63 4.301
Explicit 44 1 2 1.11 0.321
Degree 44 1 2 1.14 0.347
Security Classes | 44 1 2 1.66 0.479

Table 3: Descriptive statistics for the variables used in analysis.

Gender | Age | Occupation | Level of Education | Total Score | Explicit | Degree | Security Classes
N Valid 47 47 47 47 40 44 44 44
Missing 0 0 0 0 7 3 3 3
Mean 1.19 30.96 1.68 4.68 27.63 1.11T 1.14 1.66
Table 4: Frequencies for the variables used in the analysis.
Occupation | Level of Education | Total Score | Degree | Security Classes

Pearson Correlation 1 0.058 -0.262 0.320 0.058

Occupation Sig. (2-tailed) 0.698 0.102 0.034 0.709
N 47 47 40 44 44

Pearson Correlation 0.058 1 0.168 -0.168 -0.70

Level of Education Sig. (2-tailed) 0.698 0.301 0.277 0.653
N 47 47 40 44 44

Pearson Correlation -0.262 0.168 1 -0.305 -0.313

Total Score Sig. (2-tailed) 0.102 0.301 0.056 0.050
N 40 40 40 40 40

Pearson Correlation 0.320 -0.168 -0.305 1 -0.133

Degree Sig. (2-tailed) 0.034 0.277 0.056 0.388
N 44 44 40 44 44

Pearson Correlation 0.058 -0.070 -0.313 -1.133 1
Security Classes Sig. (2-tailed) 0.709 0.653 0.050 0.388

N 44 44 40 44 44

Table 5: Correlations among the variables used in the analysis. The highlighted correlations are considered significant.

06

05

0.4

0.3

Percent Accuracy

02

Control

Priming

Explicit

Figure 3: Mean percent accuracy for information conditions
across all scenario types.

spondent thought that explicitly asking about vulnerabilities while
they worked on the scenarios changed their mindset towards secu-
rity. The Degree variable indicates whether the respondent has a
4-year college degree in CS or related major. Security Classes in-
dicates whether the respondent has ever taken security courses or
training. Table 3 illustrates the descriptive statistics for these vari-
ables.

5.1.2 Result Interpretation

Because the accuracy for each response was graded by two sep-
arate experimenters, accuracy result was averaged across the two
scores. For each subject, mean accuracy data was obtained for each
of the six scenarios and subsequently averaged across all subjects.
Two one-way ANOVAs revealed significant effects across the three
levels of information (F'(2,36) = 11.84, M .Se = 0.30, p < 0.05)
and the six scenario types (F'(5,80) = 7.80, M Se = 0.23, p <
0.05).

With regard to the levels of information: Follow-up t-tests,
which compares the means between the controlled, implicit, and
explicit information conditions, revealed that subjects were signif-
icantly less accurate in controlled condition (M = 0.31) than in
implicit (M = 0.90) and explicit (M = 1.10) conditions (¢(18) =
3.43, SE = 0.17, p < 0.05; t(19) = 5.86, SE = 0.14, p <
0.05). As shown in Figure 3, these findings suggest that prompt-
ing developers to think about how other developers could encounter

300

06

05

04 —

0.2 +
01 +
0 4 T
X535

Figure 4: Mean percent accuracy for all scenario types across
levels of information conditions.

i

T
5L Brute Force

Percent Accuracy

Buffer saL TOCTTOU

Control | Priming | Explicit | Total
Non-security related 6 6 0 12
Security related 2 4 4 10
Total 8 10 4 22

Table 6: Questionnaire breakdown into security and non-
security questions.

potential vulnerabilities with a particular snippet of code increases
the likelihood that they will recognize the security flaw.

With regard to the types of vulnerability scenarios: Follow-
up t-tests revealed that subjects were most accurate in identify-
ing the SQL injection vulnerability (M = 1.27) and least ac-
curate in identifying the SSL Python vulnerability (M = 0.37)
t(17) = 4.54, SE = 0.19, p < 0.05). As shown in Figure
4, these results suggest that the nature of the scenarios themselves
may have a correlation with cognitive blind-spots. To further in-
vestigate how previous knowledge and experience may influence
subjects’ response accuracy, a correlation analysis revealed that the
number of vulnerabilities reported as familiar to subjects was posi-
tively correlated with higher accuracy (r(47) = 0.4, p < 0.05).

Because familiarity is linked to experience, we conducted a cor-
relation analysis on the dimensions of subjects’ experience, includ-
ing their occupation, whether or not they had a degree in com-
puter science, and whether or not they had taken computer security
courses and the number of known vulnerabilities. Results revealed

TotalScore

Frequency

1]

T T T
3 32 34 35 3

RIRIAINNE

L L R —
6 19 21 2 23 24 25 26 27 28

T
29 30

TotalScore

Figure 5: Participant’s score distribution.

that the number of known vulnerabilities was moderately corre-
lated with having taken computer security classes (r(47) = 0.27,
p < 0.05). These results indicate that developers are more likely
to find security-related blind-spots if they have been formally ed-
ucated on security related issues. Table 5 presents the correlations
among the variables and shows how the score obtained by a re-
spondent is highly correlated with whether they took some security
training or courses.

5.2 Results of Experiment Manipulation

The debrief open-ended questions asked participants how the
manipulation used in the experiment worked and its effects on how
well the participants answered the security-related questions. Table
6 details how each questionnaire was graded. Each questionnaire
contained 22 questions where 12 (54%) were not security related
and 10 (45%) were security related. The non-security questions
were warm-up questions or questions used to aid in the psycholog-
ical manipulation. Two questions in the explicit condition were
open-ended and were not graded (Why do you think developers
have problems pinpointing this particular problem?). Thus, the
maximum score a respondent could obtain was 40. Figure 5 shows
the distribution of participants scores.

5.2.1 Familiarity with Vulnerabilities

The debrief questions also asked the respondents whether they
were familiar with the vulnerabilities exercised in the study and
Figure 6 summarizes their answers. The goal of these questions

w
o

=
I

=)
=]

-
un

-
=]

u

Participant's Previous Familiarity

TOCTTOU 33L

=]

T
Buffer
Overflow

X35 saL
Injection

Security Related Vulnerability

Brute Force

Figure 6: Participant’s familiarity with vulnerabilities exer-
cised in the questionnaire.

was to manually correlate a respondent score on a scenario with
the familiarity they reported for the exercised vulnerability. For ex-
ample, how the participants that declared knowledge of the SQL
injection vulnerability scored on the scenario that exercised this
vulnerability? Were they able to correlate the scenario with the
vulnerability? In other words, were they able to apply their pre-
vious knowledge about the vulnerability at the time they needed?
When given the chance to improve the code containing the corre-
sponding vulnerability did they remove the vulnerability? Table 7
summarize this analysis.

The results in Table 7 show that many developers who were fa-
miliar with the exercised vulnerabilities had difficulties correlating
the information about them to the current programming scenario or
failed to fix vulnerable code when given an opportunity. For ex-
ample, 53% of the participants knew a particular vulnerability but
did not correlate it to working scenario. This is because the needed
security information or the security thinking was not included in
their heuristics at the moment.

5.2.2 Effectiveness of Psychological Manipulation

Despite the familiarity with vulnerabilities is weakly correlated
to secure programming, the results in Table 8 show that when primed
about the possibility of finding vulnerabilities developers changed
their mindset towards security. In particular, 83% of the partici-
pants stated that explicitly mentioning vulnerabilities changed their
programming approach and security-mindset. Table 8 shows the ef-
fectiveness of the manipulation and the use of priming can change
a developer’s approach to coding. This is an encouraging result.

Frequency

Overlooked Vulnerabilities

Knew vulnerability but did not correlate it to working scenario

25 (53%)

Brute force (17 instances - 68%)
SQL injection (6 instances - 24%)
Buffer overflow (5 instances - 20%)
XSS (4 instances - 20%)
TOCTTOU (3 instances - 12%)
Python SSL (2 instances - 8%)

a chance

Knew vulnerability but did not remove it from code when given

17 (36%)

Buffer overflow (7 instances - 41%)

SQL injection (7 instances - 41%)

Brute force, TOCTTOU and Python SSL (1
instance each - 0.05%)

Table 7: Vulnerability knowledge and the application of this knowledge when needed it.

Yes No Maybe/Unsure
Suspecting of finding vulnerabilities 15 (32%) 30 (64%) 2 (0.04%)
Asking about unexpected results cued to think about vulnerabilities 28 (60%) 19 (40%) 0 (0%)
Explicitly mentioning vulnerabilities changed your approach to a security-mindset | 39 (83%) 5 (10.6%) 3 (6.4%)

Table 8: Effectiveness of the psychological manipulation and priming to change developer’s approach to security.

301

Theme

Mentioned by
developers

Representative Quotes

1) Specifically mention vulnerabilities
changed developer approach

39 (83%)

"it it put me in the mindset that this code would be very easy to infiltrate”
"Until the words vulnerability and/or security were used, I had not thought
of security risks yet"

2) Priming about security changes
developer’s mindset

28 (60%)

"Yes, I expected to due to the power of suggestion™
"Once we were looking for unexpected results, I immediately started thinking
of what a dumb and/or malicious user would attempt to do with the program”

3) Security is not a priority /
Developer’s mindset does not include
security

23 (48%)

"Developers usually focus in delivering functional requirements”

"I generally don’t look for vulnerabilities in code"

"developers look for the most immediate solution to the current problem they
are facing, such as copying one buffer to a second, and run with whatever
solution Google brings them first"

4) Developers assume common cases

16 (34%)

"We usually try to solve the problem for a set of inputs, not for all possible
inputs."

"Developers seem to be constantly reminded of the fact that users are "dum-
mies" and any mistake they can make, they will make, etc. However, we do
not tend to think of the user as evil"”

5) Security thinking requires cognitive
effort

14 (30%)

"It’s hard to understand the fact that the user input can directly affect the
execution of the code, changing what it was supposed to do to something
else.”

"Remembering to sanitize input is tedious"

"In general, security and vulnerability problems are hard to find"

6) Developers trust APIs

14 (30%)

"It’s not straightforward that misusing strcpy can lead to very serious prob-
lems. Since it’s part of the standard ligrary, developers will assume it’s ok to
use. It’s not called unsafe_strcpy or anything, so it’s not immediately clear
that that problem is there"

"normally people expects that an official library does not have this kind of
vulnerability as default.

"The security check made prior to accessing the file gives a false impres-
sion that the any non-permitted users will be denied access upfront. [For
TOCTTOU scenario]"

7) For certain tasks or CS fields,
security is not an issue

6 (13%)

"In terms of academic Al code, security is really not an issue”

"But I don’t do a lot of network programming so I feel like it matters a bit
less [likely to think about security in the future]"

"ves [i would think about security in the future], if the app is going to be
exposed to general public. no , for internal apps, running inside a firewall."

8) Economic incentives

6 (13%)

"The reward for making a code safer is not easily seen by others and may
come only on the long run, when the code needs less maintenance."

"there’s the economic side. Developers are measured and paid for the fea-
tures delivered without functionality bugs"

9) Security education

6 (13%)

"When we are aware of a vulnerability it starts to be a part of our checklist”

Table 9: Open-ended answers analysis - Coding.

5.3 Coding

Coding is a technique used in qualitative analysis studies in the
social, behavioral and economic sciences for analysis of data. The
main idea of coding is to associate what the respondent said in an
interview or survey with a set of themes, concepts or categories
[24]. Coding is done while reading the transcripts or an interview
or the contents of an online survey. A code is a word or a short
phrase that captures a datum’s primary content or essence [25].

In this study the respondents’ comments and answers to open-
ended questions were coded according to seven themes. Table 9
shows the themes with the percentage of developers that mentioned
the theme and some representative quotes from different develop-
ers.

6. DISCUSSION

The results of this study corroborated our hypothesis that secu-
rity is not part of the heuristics used by developers in their daily
programming tasks. Humans have a short working memory, and
can only keep a limited number of mental elements readily avail-
able at any time [26]. For a variety of reasons, security information
is generally not included among these elements. Developers mostly
focus on functionality requirements and performance. Developers
are trained, evaluated and paid for delivering feature-rich software
with good performance levels. They do not see an economic incen-
tive for squeezing security thinking into their working memories
and producing safe code. Developers and managers see this issue
as a zero-sum game, and time spent on "quality” will adversely af-

302

fect function points', deadlines, timetables and budgets.

Also, developers usually assume common cases for the inputs a
piece of code will receive and the possible states the program can
reach. Vulnerabilities lie in uncommon cases overlooked by the de-
velopers and exploited by a clever adversary. Attackers make un-
common code paths happen, whereas system designers focus on the
common code paths that they know about and are often not aware
of the attack code path until the carefully crafted input is presented
to them. Static analysis methods, such as Denning’s lattice model
[27], overcome this limitation by analyzing all possible code paths.
This can be effective (despite being formally undecidable in the
general case), but have limitations on the type of programs they
can be applied and the type of vulnerabilities they can pinpoint.

Developers’ failure to address uncommon information flows is
also caused by the complexity of fault analysis. Therefore, security
thinking requires significant cognitive effort, while people use as
little effort as necessary to solve a problem [13].

This study also shows that developers tend to blindly trust code
from a reputable source, e.g., API code. Given the way humans
think and use shortcuts, simply assuming the correctness of third
party code from a reputable source simplifies developers heuristics
and their cognitive efforts to do their work. This also has to do
with attribution, as if anything goes wrong, developers are not to be
blamed as they were just using a well-known API or component.

To make matters worse, our society provides perverse economic
incentives for a market of insecure software. As discussed by Ross
Anderson in his classic ACSAC 2001 paper [28], the party who is in

'.A unit of measurement of the amount of functionality an informa-
tion system (as a product) provides to a user.

a position to protect a system is not the party that suffers the results
of security failure. The computer software and systems market is
not regulated: they select software and systems that reach the user
as quickly and as feature-rich as possible. Moreover, information
warfare also plays a role because the same software system that
can leave millions of people vulnerable to attacks can be leveraged
by national states to conduct cyber warfare and espionage. Finally,
Anderson argues that it is much easier to attack than to defend [28].
This shows that there is not a "silver bullet" to solve the technical,
economical, legal problems, and psychological challenges of vul-
nerable software as it involves.

6.1 Recommendations for Developers

In spite of the above, from a Psychology viewpoint, this paper
advocates that security information should reach users when
they need it, on the spot, and not the other way around. It
is commonly assumed that developers should educate themselves
about security and then apply the acquired knowledge when needed.
However, this assumption goes against how the human brain nat-
urally behaves. Our security solutions would be most effective if
they leveraged how humans think. This study showed how priming
security information when developers need it, on the spot, changed
their approach towards security and adapted them to include secu-
rity thinking in their repertoire of heuristics.

This is not an argument against previous and general security ed-
ucation. On the contrary, security education is essential and the re-
sults of this study showed that participants who had previous secu-
rity training performed better in the security-related questions than
participants that have never looked for security information. Bring-
ing security information to developers and not expecting them to
look for it, as advocated here, will streamline the process of re-
trieving previously acquired security information. The results of
this study also showed that many developers who were familiar
with the exercised vulnerabilities had difficulties correlating the in-
formation about them to the current programming scenario or failed
to fix vulnerable code when given an opportunity. This is because
the needed security information or the security thinking was not in-
cluded in their heuristics at the moment. However, when primed
about the possibility of finding vulnerabilities developers changed
their mindset towards security.

Given the importance of security in matters, such as cyber crime,
cyber warfare and privacy, we recommend that systems and soft-
ware that interface with the developer (IDEs, text editors, browsers,
compilers, efc.) bring security information or prime developers on
the spot when they need it: while coding. This priming informa-
tion should be closely related to their current working scenario to
increase the chances that this security cue will be included in the
developer’s heuristics. Our insight will influence the next gener-
ation of tools and applications for developers so that more secure
software reach the market. While such paradigm does not solve the
multifaceted challenges of cyber security, it can illuminate develop-
ers’ mental blind spots in vulnerabilities and secure programming.

7. RELATED WORK

The work presented in this paper intersects with the areas of vul-
nerability analysis, information security perception, and cognitive
and human factors. This section discusses the related work in these
areas.

7.1 Vulnerability Studies

The first effort towards understanding software vulnerabilities
appeared in the 1970’s through the RISOS Project that investigates
security flaws in operating systems [29]. Around the same time,
Protection Analysis study [30] focused on developing vulnerabil-
ity detection tools to assist developers. Other vulnerability stud-
ies followed, such as the taxonomies by Landwehr ez al. [31] and
Aslam [32]. In the 1990’s, Bishop and Bailey [33] analyzed cur-
rent vulnerability taxonomies and concluded that they are imper-
fect: depending on the layer of abstraction that a vulnerability was
considered, it could be classified in multiple ways. More recently

303

Crandall and Oliveira [34] proposed a view of software vulnera-
bilities as fractures in the interpretation of information as it flows
across boundaries of abstraction.

There are also discussions about the theoretical and computa-
tional science of exploit techniques and proposals for explicit pars-
ing and normalization of inputs. Bratus er al. [35] discussed a
view that the theoretical language aspects of computer science lie
at the heart of practical computer security problems, especially ex-
ploitable vulnerabilities. Samuel and Erlingsson [36] proposed in-
put normalization via parsing as an effective way to prevent vulner-
abilities that allow attackers to break out of data contexts. Garg and
Camp [37] identified systematic errors by decision-makers leverag-
ing heuristics as a way to improve security designs for risk averse
people.

Researchers have also studied vulnerability trends. A study by
Browne et al. [38] determined that the rates at which incidents were
reported to CERT could be mathematically modeled. Gopalakr-
ishna and Spafford [39] analyzed software vulnerabilities in five
critical software artifacts using information from public vulnera-
bility databases to predict trends. Alhazmi et al. [40] presented a
vulnerability discovery model to predict long and short term vul-
nerabilities for several major operating systems. Anbalagan and
Vouk [41] analyzed and classified thousands of vulnerabilities from
OSVDB [42] and discovered a relationship between vulnerabilities
and exploits. Wu et al. [43] performed an ontology-guided analysis
of vulnerabilities and studied how semantic templates can be lever-
aged to identify further information and trends. Zhang et al. [44]
analyzed vulnerabilities from the NVD database using machine
learning to unsuccessfully discover the time to the next vulnera-
bility for a given software application.

There are also studies on developer’s practices. Meneely and
Williams [45] studied developers collaboration and unfocused con-
tributions into developer activity metrics and statistically correlated
them. Schryen [46] analyzed the patching behavior of software
vendors of open-source and closed-source software, and found that
the policy of a particular software vendor is the most influential
factor on patching behavior.

However, none of the above research efforts directly leveraged
the human factor to understand software vulnerabilities as proposed
in this paper.

7.2 Information Security Perception

Asghapours ef al. [47] advocate the use of mental models of
computer security risks for improvement of risk communication
to naive end users. Risk communication consists of security ex-
perts messages to non-experts and a mental model in a simplified
internal concept of how something works in reality. In their study
they leveraged five conceptual models from the literature: Physical
Safety, Medical Infections, Criminal Behavior, Warfare, and Eco-
nomic Failures.

Huang et al.[48] studied ways to adjust people’s perception of in-
formation security to increase their intention to adopt IT appliances
and compliance with security practices. Their user study involving
e-banking and passwords showed that knowledge is a key factor in-
fluencing the gap between people’s perceived security and a system
real security.

Garg and Camp [49] leverage the classic Fischhoff’s canonical
nine dimensional model of offline risk perception [50] to better un-
derstand online risk perceptions. They found that the results ob-
tained for online risks differed from the ones obtained for offline
risks and that the severity of a risk was the biggest factor in shap-
ing risk perception.

Research has also been done in the area of computer warnings for
end users [51, 52]. In computer security, warnings are designed to
protect people from becoming victims of attacks, such as phishing,
malware installation, e-mail spam, efc. Researchers have found that
people tend to not pay attention to messages that do not map well
onto a clear course of action [51]. This corroborates our hypothesis
that unless the cue is related to the working scenario at hand, it
will likely to be left out from the decision-maker’s repertoire of

heuristics.
All these studies consider information security perception from
the non-expert end user viewpoint and not developers.

7.3 Human Factors in Software Development

Using human factors in technology research is not a new con-
cept. Curtis, Krasner, and Iscoe [53] studied the software develop-
ment processes by interviewing programmers from 17 large soft-
ware development projects. They tried to understand the effect of
behavioral and cognitive processes in software productivity. They
believed software quality in general could be improved by attack-
ing the problems they discovered in this exploratory research. They
summarized the study by describing the implication of their inter-
views and observations on different aspects of the software devel-
opment process, including team building, software tools and devel-
opment environment and model.

Others also recognized the role of cognition in program repre-
sentation and comprehension [54, 55], design strategies and pat-
terns [56, 57], and software design [58, 59]. These studies show
the evolution of design paradigm and development tools from task-
centered to human-centered. Current software development tools
are very good at pinpointing errors and making sensible sugges-
tions to avoid problems later. New derivatives are created to assist
programmers. They have helped the software development process
to be less error-prone in general. These studies paved the way for
secure software development from the human aspect.

We believe this paper leverages those studies as stepping stones
and investigate deeper in the human factor issues, in particular, to
understand the impact of cognitive processes on software vulner-
abilities. Like previous studies that lead to better software devel-
opment tool, faster turnout, and more robust software integration,
the insights obtained from this study can help the software security
community gain insights, improve software security, better the de-
sign of guidelines, and build more effective vulnerability blind spot
tools.

8. CONCLUSIONS

This paper investigated a hypothesis that software vulnerabilities
are blind spots in developers’ heuristics in their daily coding activ-
ities. Humans have been hardwired through evolution for adopting
shortcuts and heuristics in decision making due to the limitations
in their working memory. As vulnerabilities lie in uncommon code
paths and we have a market that generates perverse incentives for
insecure software, security information is often left behind from
developer’s repertoire of coding strategies.

A study with 47 developers using psychological manipulation
was conducted to validate this hypothesis. In this study each de-
veloper worked for approximately one hour on six programming
scenarios that contained vulnerabilities. The developers were told
that the study’s goal was to understand developer’s mental models
while coding. The sessions progressed from providing no infor-
mation at all about possible vulnerabilities, to priming developers
about unexpected results, and explicitly mentioning the existence
of vulnerabilities in the code. The results show that developers
in general changed their mindset towards security when primed
about vulnerabilities on the spot. When not primed, even devel-
opers familiar with certain vulnerabilities failed to correlate them
with their working scenario and fix them in the code when given a
chance. Therefore, the assumption that developers should be edu-
cated about security and then apply what they learned while coding
goes against the way the human brain behaves. This paper advo-
cates that this assumption be reversed and that security information
should reach developers when they need it, on the spot and corre-
lated to their tasks at hand. The authors hope that these insights can
influence the next generation of tools interfacing developers, such
as IDE’s, text editors, browsers and compilers so that more secure
software reach the market.

Plans for future work include an investigation of the best method-
ologies for cueing developers and an analysis of the correlation of

304

cueing effectiveness and previous security education.

Acknowledgments

We would like to thank the developers who participated in this
study and the anonymous reviewers for valuable feedback. This re-
search is funded by the National Science Foundation under grants
CNS-1149730, CNS-1223588, and CNS-1205415.

9. REFERENCES

[1] “Symantec Internet Security Threat Report 2013.”

http://www.symantec.com/content/en/us/

enterprise/other_resources/b-istr_main_

report_v18_2012_21291018.en-us.pdf.

B. K. Marshall, “PasswordResearch.com Authentication

News: Passwords Found in the Wild for January 2013.”

http:

//blog.passwordresearch.com/2013/02/

passwords—found-in-wild-for—-january-2013.

html.

“Seventeen steps to safer C code.”

http://www.embedded.com/design/

programming—-languages—and-tools/4215552/

Seventeen-steps—-to-safer-C-code.

D. Kahneman and A. Tversky, “On the reality of cognitive

illusions,” Psychological Review, pp. 582-591, 1996.

G. Gigerenzer, R. Hertwig, and T. Pachir, Heuristics: The

Foundations of Adaptive Behavior. Oxford University Press,

2011.

B. Schwartz, “The tyranny of choice,” Scientific American,

pp- 71-75, 2004.

S. Botti and S. S. Iyengar, “The dark side of choice: When

choice impairs social welfare,” American Marketing

Association, pp. 24-38, 2006.

C. Kern, A. Kesavan, and N. Daswani, Foundations of

security: what every programmer needs to know. Apress,

2007.

E. Harmon-Jones, D. M. Amodio, and L. R. Zinner, Social

psychological methods of emotion elicitation (Handbook of

Emotion Elicitation and Assessment). Oxford University

Press, 2007.

W. Thorngate, “Efficient decision heuristics,” Behavioral

Science, vol. 25, no. 3, pp. 219-225, 1980.

K. V. Katsikopoulos, “Efficient decision heuristics,” Decision

Analysis, vol. 8, no. 1, pp. 10-29, 2011.

[12] J. W. Payne, J. R. Bettman, and E. J. Johnson, The Adaptive
Decision Maker. Cambridge University Press, 1993.

[13] G. K. Zipf, Human Behavior and The Principle of Least
Effort. Addison-Wesley, 1949.

[14] J. Rieskamp and U. Hoffrage, Simple Heuristics that Make

Us Smart. Oxford University Press, 1999.

C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,

A. Grier, P. Wagle, Q. Zhang, and H. Hinton, “StackGuard:

Automatic adaptive detection and prevention of

buffer-overflow attacks,” in USENIX Security, pp. 6378, Jan

1998.

G. Wassermann and Z. Su, “Static Detection of Cross-site

Scripting Vulnerabilities,” in 30th International conference

on Software engineering, ICSE °08, (New York, NY, USA),

ACM, 2008.

Z. Su and G. Wassermann, “The Essence of Command

Injection Attacks in Web Applications,” in Conference

Record of the 33rd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’06, (New

York, NY, USA), pp. 372-382, ACM, 2006.

[18] “Urllib and validation of server certificate.” http:
//stackoverflow.com/questions/6648952/.

(2]

(3]

(4]

(5

—

(6]

[7

—

(8]

(9]

[10]

(11]

[15]

[16]

(17]

[19]
[20]
[21]

[22]
[23]

[24]
[25]
[26]
[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

W. S. McPhee, “Operating System Integrity in OS/VS2,”
IBM Systems Journal, vol. 13, no. 3, pp. 230-252, 1974.

A. Narayanan and V. Shmatikov, “Fast dictionary attacks on
passwords using time-space tradeoff,” ACM CCS, 2005.

R. E. Stake, Qualitative Research: Studying How Things
Work. The Guilford Press, 2010.

“Qualtrics (http://www.qualtrics.com/).”

F. Gravetter and L. Wallnau, Statistics for the Behavioral
Sciences. Wadsworth/Thomson Learning, 8th ed., 2009.

R. S. Weiss, Learning from Strangers - The Art and Method
of Qualitative Interview Studies. The Free Press, 1994,

J. Saldana, The Coding Manual for Qualitative Researchers.
SAGE Publications, 2012.

A. Newell and H. Simon, Human Problem Solving. Prentice
Hall, 1972.

D. Denning, “A lattice model of secure information flow,”
Communications of ACM, 1976.

R. Anderson, “Why information security is hard - an
economic perspective,” ACSAC, 2001.

R. P. Abbot, J. S. Chin, J. E. Donnelley, W. L. Konigsford,
and D. A. Webb, “Security Analysis and Enhancements of
Computer Operating Systems,” NBSIR 76-1041, Institute for
Computer Sciences and Technology, National Bureau of
Standards, 1976.

R. B. II and D. Hollingsworth, “Protection Analysis Project
Final Report,” ISI/RR-78-13, DTIC AD A056816,
USC/Information Sciences Institute, 1978.

C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S.
Choi, “A Taxonomy of Computer Program Security Flaws,”
ACM Computing Surveys, vol. 26, no. 3, 1994.

T. Aslam, “A Taxonomy of Security Faults in the UNIX
Operating System,” 1995.

M. Bishop and D. Bailey, “A Critical Analysis of
Vulnerability Taxonomies,” Technical Report CSE-96-11,
University of California at Davis, 1996.

J. Crandall and D. Oliveira, “Holographic Vulnerability
Studies: Vulnerabilities as Fractures in Interpretation as
Information Flows Across Abstraction Boundaries,” New
Security Paradigms Workshop (NSPW), 2012.

S. Bratus, M. E. Locasto, M. L. Patterson, L. Sassaman, and
A. Shubina, “Exploit Programming: From Buffer Overflows
to “Weird Machines” and Theory of Computation.” USENIX
slogin, December 2011.

M. Samuel and U. Erlingsson, “Let’s Parse to Prevent
pwnage (invited position paper),” in Proceedings of the 5th
USENIX conference on Large-Scale Exploits and Emergent
Threats, LEET*12, (Berkeley, CA, USA), pp. 3-3, USENIX
Association, 2012.

V. Garg and L. J. Camp, “Heuristics and biases: Implications
for security,” IEEE Technology & Society, March 2013.

H. K. Browne, W. A. Arbaugh, J. McHugh, and W. L. Fithen,
“A trend analysis of exploitations,” IEEE Symposium on
Security and Privacy, 2001.

R. Gopalakrishna and E. H. Spafford, “A Trend Analysis of
Vulnerabilities,” CERIAS Tech Report 2005-05, 2005.

O. H. Alhazmi and Y. K. Malaiya, “Prediction capabilities of
vulnerability discovery models,” IEEE Reliability and
Maintainability Symposium (RAMS), pp. 86-91, 2006.

O. H. Alhazmi and Y. K. Malaiya, “Towards a unifying
approach in understanding security problems,” IEEE
International Conference on Software Reliability
Engineering (ISSRE), pp. 136-145, 2009.

“Open Source Vulnerability Database
(http://www.osvdb.org/).”

Y. Wu, R. A. Gandhi, and H. Siy, “Using Semantic
Templates to Study Vulnerabilities Recorded in Large
Software Repositories,” ICSE Workshop on Software

305

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

(591

Engineering for Secure Systems, 2010.

S. Zhang, D. Caragea, and X. Ou, “An Empirical Study on
using the National Vulnerability Database to Predict
Software Vulnerabilities,” International Conference on
Database and Expert Systems Applications (DEXA), 2011.
A. Meneely and L. Williams, “Secure Open Source
Collaboration: An Empirical Study of Linus’ Law,” ACM
CCS, pp. 453-462, 2009.

G. Schryen, “A comprehensive and comparative analysis of
the patching behavior of open source and closed source
software vendors,” IMF, 2009.

F. Asgapour, D. Liu, and L. J. Camp, “Mental models of
computer security risks,” Financial Cryptography and Data
Security Lecture Notes in Computer Science, vol. 4886,

pp. 367-377, 2007.

D.-L. Huang, Pei-Luen, P. R. abd Gavriel Salvendya,

F. Gaoa, and J. Zhoua, “Factors affecting perception of
information security and their impacts on it adoption and
security practices,” International Journal of
Human-Computer Studies, vol. 69, no. 12, 2011.

V. Garg and L. J. Camp, “End user perception of online risk
under uncertainty,” Hawaii International Conference On
System Sciences, vol. 4886, 2012.

B. Fischhoff, P. Slovic, S. Lichtenstein, and B. C.

Stephen Read, “How safe is safe enough? a osychometric
study of attitudes towards technological risks and benefits,”
Policy Sciences, vol. 9, no. 2, 1978.

C. Bravo-Lillo, L. Cranor, J. Downs, and S. Komanduri,
“Bridging the gap in computer security warnings: A mental
model approach,” IEEE Security and Privacy, vol. 9, no. 2,
2011.

K. Witte, “Putting the fear back into fear appeals: The
extended parallel process model,” Communication
Monographs, vol. 59, no. 4, pp. 329-349, 1992.

B. Curtis, H. Krasner, and N. Iscoe, “A field study of the
software design process for large systems,” Communications
of the ACM, vol. 31, no. 11, pp. 1268-1287, 1988.

S. Letovsky, “Cognitive processes in program
comprehension,” Journal of Systems and software, vol. 7,
no. 4, pp. 325-339, 1987.

H. C. Purchase, L. Colpoys, M. McGill, D. Carrington, and
C. Britton, “Uml class diagram syntax: an empirical study of
comprehension,” in Proceedings of the 2001 Asia-Pacific
symposium on Information visualisation-Volume 9,

pp. 113-120, Australian Computer Society, Inc., 2001.

A. Chatzigeorgiou, N. Tsantalis, and I. Deligiannis, “An
empirical study on students ability to comprehend design
patterns,” Computers & Education, vol. 51, no. 3,

pp. 1007-1016, 2008.

W. Visserl, J.-M. Hocz, and F. Chesnay, “Expert software
design strategies,” 1990.

R. Jeffries, A. A. Turner, P. G. Polson, and M. E. Atwood,
“The processes involved in designing software,” Cognitive
skills and their acquisition, pp. 255-283, 1981.

B. Adelson and E. Soloway, “A model of software design,”
International Journal of Intelligent Systems, vol. 1, no. 3,
pp. 195-213, 1986.

