Understanding Misunderstandings in Source Code

Dan Gopstein®’* Jake Jannacone’* Yu Yan = Lois DeLong’’

Yanyan Zhuang'* Martin K.-C. Yeh™= Justin Cappos’’

?:New York University, USA ** University of Colorado, Colorado Springs, USA “~Pennsylvania State University, USA

ABSTRACT

Humans often mistake the meaning of source code, and so mis-
judge a program’s true behavior. These mistakes can be caused
by extremely small, isolated patterns in code, which can lead to
significant runtime errors. These patterns are used in large, pop-
ular software projects and even recommended in style guides. To
identify code patterns that may confuse programmers we extracted
a preliminary set of ‘atoms of confusion’ from known confusing
code. We show empirically in an experiment with 73 participants
that these code patterns can lead to a significantly increased rate of
misunderstanding versus equivalent code without the patterns. We
then go on to take larger confusing programs and measure (in an
experiment with 43 participants) the impact, in terms of program-
mer confusion, of removing these confusing patterns. All of our
instruments, analysis code, and data are publicly available online
for replication, experimentation, and feedback.

CCS CONCEPTS

» General and reference — Empirical studies; + Software and
its engineering — Software usability;

KEYWORDS

Programming Languages; Program Understanding;

ACM Reference Format:

D. Gopstein, J. Iannacone, Y. Yan, L. Delong, Y. Zhuang, M. K.-C. Yeh, J. Cap-
pos. 2017. Understanding Misunderstandings in Source Code. In Proceedings
of 2017 11th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Paderborn, Germany, September 4-8, 2017 (ESEC/FSE’17), 11 pages.
https://doi.org/10.1145/3106237.3106264

1 INTRODUCTION

Source code serves a dual purpose. It communicates program in-
structions to machines, and programmer intent to people. Unfortu-
nately, people and machines often draw different conclusions about
the behavior of a piece of code. While a difference of interpretation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09...$15.00
https://doi.org/10.1145/3106237.3106264

can happen naturally in some situations (such as those involving
randomness, poorly understood APIs, or undefined behavior), it
can also occur as a response to small, self-contained lines of code.
These code patterns, which are easy to misinterpret, can naturally
lead to bugs in code. In turn, the consequences of these bugs can
include diminished productivity, faulty products, and higher costs.

In the past 50 years since software has become ubiquitous, we
have seen a proliferation of software bugs. Notable examples, such
as Apple’s ‘goto fail’ SSL bug [4], Ariane 5’s floating point overflow
bug [23, 28], and AT&T’s cascading network failure [6], have shown
us that it is extremely difficult to deliver bug-free software despite
large incentives to do so. The consequences of the aforementioned
bugs were, respectively, an SSL man-in-the-middle vulnerability to
all OSX and i0S users, the destruction of a $500m spacecraft, and
the loss of transnational communication for 50 million long distance
calls. Each of these failures was caused by a single, well-contained,
programming error at the syntactic or semantic level, rather than
the algorithmic or system-levels of the project. Issues like this
are quite common. While editing this document for submission,
Cloudflare published an analysis of ‘Cloudbleed’ [21] — a bug that
leaked sensitive customer data publicly on the web. The two-line
snippet of code responsible for the bug contains two of the small,
self-contained patterns we discuss here (Pre-Increment and Omitted
Curly Braces, see Table 1).

The ability to identify and remove these confusing program ele-
ments is important for more than just the avoidance of accidents.
The ability to understand pre-existing source code is one of the
most important elements of a continuously successful software
project. Confusing code affects comprehension, a concept central to
all stages of software development, particularly maintenance and
code review. Code review is a valuable tool for validating design
decisions, and its effectiveness rests heavily on the readability of
the source code [3]. Various estimates place code maintenance, or
the modification of code after the product has already been deliv-
ered, as the most expensive phase of development in terms of both
time and money [12, 27]. Thus, being able to reliably identify and
remove code that can cause misunderstandings will also enhance
productivity and reduce maintenance costs.

In this work, we seek out and experimentally validate the small-
est pieces of code that can routinely cause programmers to misun-
derstand code. We call these indivisible, misunderstanding-causing
patterns ‘atoms of confusion’ or ‘atoms’ for short. These atoms can
serve as an empirical and quantitative foundation for understand-
ing what makes code confusing. To do this, we selected programs
that are already acknowledged as confusing to humans (winners
of the IOCCC - the International Obfuscated C Code Contest). We

https://doi.org/10.1145/3106237.3106264
https://doi.org/10.1145/3106237.3106264

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

isolated small patterns of code, often contained within a single
line, from the IOCCC programs that were the underlying cause of
programmer confusion. We then performed an empirical human
subjects experiment with 73 participants to find which of these
code patterns caused a statistically significant amount of confusion
(i-e., lead programmers to believe the program containing this pat-
tern behaves differently than the C language specification dictates).
Next, we measured the impact of removing these atoms of con-
fusion from larger obfuscated programs, also drawn from IOCCC
winners. We simplified the IOCCC programs by applying behavior-
preserving transformations to remove identified atoms, and used
these programs as the basis for a second experiment. We recruited
43 participants who had not taken part in our prior experiment. We
were able to determine, quantitatively, how much we could reduce
programmer error simply by clarifying these atoms.

Through this work we have made several unique contributions:

o Methodology for empirically deriving confusing code patterns.
We describe a scientifically sound method for finding, validat-
ing, and measuring the potency of small confusing patterns
in code. Our methods are empirical, quantitative, and ob-
jective, which results in high quality, easily analyzable data.
Given the value of replicable work in empirical software
engineering [37], we have made replication packets pub-
licly available at https://atomsofconfusion.com so anyone
can reproduce or extend our work at any time.

o Alarge, publicly available dataset. We tested 122 questions on
116 subjects over two IRB-approved! experiments. All of our
anonymized data has already been published to our website
as well, so other researchers can test their own hypotheses
on an existing dataset.

o 15 statistically significant atoms of confusion. We uncovered,
assessed, and analyzed 15 very small, potent sources of con-
fusion. We describe these obfuscating atoms and the trans-
formations that clarify them.

o Survey of these patterns in well-known style guidelines. Some
of our findings contradict expert opinions found in popular C
style guidelines. We survey several well-known documents,
and point out the recommendations that conflict with our
empirical evidence.

o In-depth analysis of experiment subject responses. Beyond
supporting our primary hypothesis, our data offers many
interesting views into programmer comprehension and be-
havior. We explore the potential significance of the distri-
bution of wrong answers to the same question, the time it
takes programmers to answer correctly, and the accuracy of
our subjects’ estimates of their own ability.

The rest of this paper is laid out as follows. We begin in Section
2, by discussing the many sub-fields of computer science from
which we drew inspiration or direction for our work. Next, we
lay out the major concepts that underlie our research questions in
Section 3. In Section 4, we describe the atoms discovered in IOCCC
winners. Building on the identified atoms, we experimentally tested
which were more confusing than transformed code, as is detailed
in Section 5. We took the confirmed atoms and measured the size

LAl experiments described in this paper were approved by the Institutional Review Boards (IRBs)
at both NYU and PSU.

Gopstein, lannacone, Yan, Delong, Zhuang, Yeh, and Cappos

of their impact on small programs as described in Section 6. Finally,
in Sections 7 and 9 we discuss our results in a larger context.

2 RELATED WORK

Code confusion is a recognized problem that has had many pro-
posed solutions. Specific code constructs have been deemed taboo
by the programming community [29], most notably goto state-
ment [13], global mutable state [42], and magic numbers [26]. Less
aggressively, programmers have learned to avoid certain patterns
that have been dubbed ‘code smells’, or, as Fowler defined them,
“structures in the code that suggest... the possibility of refactor-
ing” [19]. In this work, we aim to move these ideas from hunches
and ‘gut feelings’ to empirically-verified examples of difficult code.
Below we summarize the work of others who have attempted to
explain or remedy the challenges of understanding code.

Style guides. Many of the patterns we identified overlap with
recommendations given in popular style guides. For example, The
GNU Coding Standards [39] recommends avoiding variable reuse,
and using assignments as conditional predicates. NASA’s C Style
Guide [15] also warns about several of the patterns we investigate,
including recommending the use of explicit comparisons in predi-
cates, avoiding the conditional operator, and not using side-effect
operators in relational expressions. However, we found situations
where style guidelines do not match our findings, such as avoid-
ing curly braces for single-statement blocks [41]. We detail these
findings in the Discussion section.

Obfuscation. Obfuscation takes legible code and transforms it
into a form that masks its function. The obfuscation techniques most
closely related to our work are those that evaluate the “potency” [11]
(i.e., human readability) of obfuscation. Our work reverses the goals
of such a technique by taking code that is difficult to understand
and transforming it into a more readable form. Recently, Avidan
and Feitelson [2] reported using a variety of indirect metrics, such
as transparency and flow complexity, to evaluate the confusion
of obfuscation techniques. Our work more directly evaluates code
confusion by testing subject comprehension.

Metrics. There have been many efforts to quantify the clarity
of software [43]. Multiple studies have shown that the number
of lines of code does correlate with the incidence of bugs [35],
implying that more code leads to more bugs. On the other hand,
cyclomatic complexity [30] looks at all linearly-independent circuits
through a program graph. Such a technique is useful for analyzing
code at the function, module, or program level. The confusion we
study, however, tends to manifest on the expression or statement
level, which is finer-grained and often has a very low cyclomatic
complexity. Halstead [22] proposed measures of software based on
the counts, proportions, and diversity of operators and operands in
programs, without regard to the specific operators and operands in
use. Yet, we have found that confusing elements can be removed by
simply moving or replacing operators, while keeping the Halstead
metrics constant. More recently, Shao and Wang [36] measured
complexity by the combined cognitive weight of individual control
structures (branch, iteration, concurrency, etc.). However, their
work treats all interactions between control structures as uniform.
Our results indicate that some operations can be disproportionately
more confusing than others that compute the same result.

https://atomsofconfusion.com

Understanding Misunderstandings in Source Code

Static analysis and tooling. Heuristics can be useful for flag-
ging potentially detrimental static properties of a program. These
actions can be performed by compilers and static analysis tools,
such as Lint [24]. Instead of simply rejecting invalid code, compilers
almost always include validation code to alert programmers to their
mistakes. At the time of this writing, GCC has 185 warning flags,
many of which present helpful comments about common unclear
or dangerous source code patterns discovered during compilation.

In general, these tools target issues that overlap with our experi-
ments, based on the collective anecdotal evidence of the software
engineering community. The theory put forth in this paper can
bolster work on engineering tools by validating their implicit as-
sumptions and offering additional patterns to investigate.

Program comprehension. Of the literature in program com-
prehension, the work most related to our investigation is Buse and
Weimer’s [7], which studied local code features of small program
snippets. However, their method of determining code complexity
is based on the opinion of programmers, who rated snippets on a
1-5 scale of readability. Tashtoush et al. [40] also designed a model
of software readability by asking questions about what features
programmers found confusing. We complement this previous work
by testing an objective measure of misunderstanding.

A few of the specific code patterns we investigate have been
examined in earlier studies. Dolado et al. [14] tested whether code
that contained side-effects was more likely to cause subjects to
misinterpret its function. Their method of evaluation is very similar
to ours, and their results are generally confirmed by ours, but their
experiment focused only on one code pattern. Jones [25] tested a
hypothesis that “there will be a significant correlation between a
developer’s knowledge of relative binary operator precedence and
the amount of experience they have had handling the respective
binary operator pair”. His experiment involved subjects placing
redundant parentheses around expressions with two binary oper-
ators and measuring the correctness of the placement. Confusion
surrounding binary operators is very related to our atom Operator
Precedence. The primary difference between Jones’ method and ours
is that he has subjects modify the code snippets, while ours are only
asked to hand evaluate the code. While testing the presence of con-
fusion against a clarifying transformation is not the primary focus
of his work, the results he shares are confirmed by our experiments.

Elshoff and Marcotty’s [17] work introduced the idea of clarify-
ing transformations to improve the readability of source code. We
leverage these ideas in our experiment to measure the magnitude
of confusion caused by specific code elements.

3 DEFINITIONS

In this section, we explain the terms and concepts used in our work.
We define the smallest patterns in code that can cause misunder-
standing in programmers, the process used to present these patterns
to test subjects, and the transformations that can remove them. We
also refine the scope of our investigation.

Confusion. For the purpose of this work, ‘confusion’ is defined
as what happens when a person and a machine read the same piece
of code, yet come to different conclusions about its output.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Our goal was to target specific situations where a programmer
might tend to misunderstand the behavior of a piece of code. Then,
we looked within those instances to identify common patterns of
code that could be the source of this confusion. We labeled these
patterns ‘atoms of confusion’. We restricted our definition of an
atom to only minimal portions of code so that our findings would
be generalizable and occur frequently in real projects. This choice
also ensures that we can design experiments that are very accurate
in measuring the extent of the confusion caused by the atom. For
example, if a subject were to misinterpret a = b++; it is important
to test whether they would misinterpreta = b; b++; as well. If
both assignment or post-increment are confusing when they appear
alone, then the confusion is not due to the combination of the two.

Exclusions. We acknowledge a number of factors can lead to
programmer comprehension errors. To target programmer mistakes
caused by misunderstanding, as opposed to cognitive inability or
lack of information we exclude the following from our experiments.

¢ Non-deterministic: Non-deterministic programs are im-
possible to reliably predict, and are therefore outside the
scope of our investigation. For example, we avoid the rand ()
function in our code snippets.

¢ Undefined / Non-portable: Code which is not executed
uniformly across various computer environments was ex-
cluded. For example a = a++ has no universal meaning.

e Computational: Programmers suffer from working mem-
ory and attention constraints [38], but this is tangential to
our investigation. Any confusion that could be removed by
using a calculator is outside the scope of this work.

o API related: In our experiments, we only focus on code for
which the entire implementation is available.

3.1 Normalization

Before human subjects read source code in either of our experi-
ments, we first performed a normalization step on the programs.
Any instances of the above exclusions found in the experiment’s
source code was replaced by conceptually equivalent code that
contained no known sources of confusion. We also made sure not
to encode any ‘meta’ information in our code. The specific precau-
tions we took were similar to those used by Siegmund et al. [38]
who also enforced a bottom-up/syntax-to-semantics style of com-
prehension by removing beacons that might trigger a connection
to pre-existing semantic knowledge. In our case, we removed all
comments, sanitized all string literals, renamed all variables to V1,
V2, etc., and every macro to M1, M2, etc., and we kept all math as
simple as possible, while still preserving the atom of confusion.

3.2 Transformation

Atoms of confusion are abnormally confusing patterns in code. We
define atoms relative to functionally equivalent code that does not
confuse programmers. We call the removal of an indivisibly small
source of confusion an atom removal transformation. These trans-
formations substitute confusing code with similar, but relatively
less confusing code. For example, take the code V1 && F2(). To
remove this atom (which we call Logic as Control Flow) we add
an explicit if condition around V1 to read if (V1) { F2(); }.
These transformations are not unique, as there is not necessarily

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

any one right way to write code. Several types of atoms can be
obviated in multiple ways, and in these cases we used our best
judgment to choose the most understandable code to replace the
atom. This can lead to a pitfall where a transformation either fails
to remove the original source of confusion, or adds its own. This
type of error reduces the observed potency of the original atom.

4 IDENTIFIED ATOMS

To build an initial set of potential atoms of confusion, we studied
the code of known confusing programs. We tried to minimize the
amount of confusion from exclusions (Section 3) and maximize the
likelihood of confusion from potential atoms in our test set. With
this criteria in mind, we chose to explore the winning entries of
the International Obfuscated C Code Contest (IOCCC). The goal of
this competition is to solicit programs that demonstrate “violations
of structured programming, non-clarity, and use of ‘by the K&R
book’ C” [33]. IOCCC winners are designed to cause confusion in
programmers and, as such, these programs offer sufficient examples
of atoms of confusion. While IOCCC entries may not be generally
representative of real-life programs, they reveal the same patterns
that often do create confusion in large and popular projects.

The process of identifying new potential atoms of confusion was
carried out by two human coders. Programs were broken down into
small confusing sections and compared against each other to find
common recurring patterns. Snippets of code that were confusing,
contained no excluded forms of confusion, and could be simplified
through a behavior-preserving transformation were considered
candidates to be atoms of confusion.

5 ATOM EXISTENCE EXPERIMENT

The first of our two planned experiments (Figure 1) was designed to
validate the initial set of atoms identified in Section 4. Programmers
were shown a series of code snippets and asked to hand evaluate
each, and submit the standard output. Questions were formulated in
pairs, each structurally similar, but one containing an atom of con-
fusion, and the other transformed to remove the atom. Each snippet
was designed to be ‘minimal’, that is, to show the smallest possible
piece of code to exhibit the effect of the atom. Only one atom was
tested per snippet. Due to the small size of most atoms, the average
snippet contained only 8 lines of code, most of which was boiler
plate. Ignoring blank lines, declarations, and experimental printf
statements, the average length of atom-related code was ~1.9 lines
per snippet. We created three pairs of atom candidate/transformed
questions per atom. An example snippet is shown in Figure 2.

We recruited and tested 73 subjects, predominantly students
at large North American universities. Each subject was required
to have at least 3 months experience with the C or C++ program-
ming languages. The questions were presented via a web interface.
Source code was displayed with no syntax highlighting, since the
selection of any particular highlighting scheme would bias the
subjects’ ability to parse the code. Eight of the participants were di-
rectly supervised as they took the test, while the remaining subjects
completed the questions online.

Gopstein, lannacone, Yan, Delong, Zhuang, Yeh, and Cappos

Design: Randomized Partial Counterbalanced

Sample: 73 programmers with >3 months C/C++ experience.
Control: Tiny program (~8 lines) containing a single atom.
Treatment: A version of the control code transformed to
remove the atom of confusion.

Null Hypothesis Hy: Code from both control and treatment
groups can be hand-evaluated with equal accuracy.
Alternative Hypothesis H,: The existence of an atom of
confusion causes more errors than other code in
hand-evaluated outputs.

Figure 1: Summary of the Atom Existence Experiment

void main() {
char V1 = 2["qwert"];

void main() {
char V1 = "zxcvb"[4];

printf("%sc\n", V1);
} }
(a) obfuscated

printf("%c\n", V1);

(b) clarified

Figure 2: Example Reversed Subscripts snippet pair.

5.1 Experimental Conditions

Before executing our full-scale experiment, we conducted a pilot
experiment on 11 participants with 6 atoms. The pilot helped us
correct small errors in our instrument, and tune the parameters
of our full experiment. Due to the large volume of questions we
wanted to show in the full experiment, we decided not to show
every question to every subject. To reduce mental fatigue, we aimed
to constrain the length of each session to approximately 60 minutes
for the average participant [5]. Since each question, on average,
took just under a minute to answer in our pilot, we chose to show
each subject only 2 of each group of 3 question pairings in our
full experiment, assigned cyclically. This means that each subject
received % of our 114 questions and each question was received
by # of all participants. Each subject always saw both the atom
candidate and its transformed pair.

We controlled for the possibility of a learning effect [32] in three
distinct ways. Firstly, we randomized the order of every question,
so that any bias inherent in the question ordering was distributed
evenly among all participants. Secondly, between each atom candi-
date/transformed pair of questions we enforced a minimum distance
of 11 intermediate questions. This number was chosen by extrapo-
lating from our pilot experiment results. In the pilot, we identified
the optimum distance after which learning effects diminished, and
then scaled this value by the number of new questions added for
the main experiment. Lastly, we randomized constant values in
the code. Atoms, by definition, cannot rely on the specific value
of a constant. Therefore, by changing the constant values in our
questions the validity of the atom remained intact, while the added
differences made it harder to connect the two questions of a pair.

We designed each question such that every common interpreta-
tion, correct and incorrect, would result in a different output. We
did this by using combinations of constants for our variable initial-
izations, which create different values when combined in different
ways. For example, if we were testing whether subjects understood

~

Understanding Misunderstandings in Source Code

Table 1: Atom candidates extracted from IOCCC winners

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Atom Name

Description

Atom Example

Transformed

Change of Literal
Encoding

Preprocessor in
Statement

Macro Operator
Precedence
Assignment as Value
Logic as Control Flow
Post-Increment /
Decrement
Type Conversion
Reversed Subscripts
Conditional Operator
Operator Precedence
Comma Operator
Pre-Increment /
Decrement

Implicit Predicate

Repurposed Variables
Omitted Curly Braces

All numbers are stored as binary, but for convenience we represent numbers in decimal, hex, or octal.
Depending on the circumstance, certain representations are more understandable.

The preprocessor replaces directives with whitespace. Consequently, preprocessor directives may be placed
inside a statement. Since the preprocessor directive and the source code are compiled in different phases,
they are processed independently.

Macro references are impossible to distinguish from other identifiers and can act in ways that variables and
functions can not, such as lax parameter binding.

The assignment expression changes the state of the program when it executes, however it also returns a
value. When reading an assignment expression people may forget one of the two effects of the expression.
Traditionally, the & and | | operators are used for logical conjunction and disjunction, respectively. Due to
short-circuiting, they can also be used for conditional execution.

The post-increment and decrement operators change the value of their operands by 1 and return the original
value. Confusion arises because the value of the expression is different from the value of the variable.

The C compiler will often implicitly convert types when there is a mismatch. Sometimes this conversion also
results in a different outcome than a reader expects.

Arrays can be indexed using the subscript operator, but underneath “E1[E2] is identical to (*((E1)+(E2)))” [1].
Since addition is commutative, so too is the subscript operator.

The conditional operator is the only ternary operator in C, and functions similarly to an if/else block. However,
it is an expression for which the value is that of the executed branch.

C has nearly 50 operators each in one of 15 precedence classes with either right or left associativity. Most
programmers know only a functional subset of these rules.

The comma operator is used to sequence series of computations. Whether due to its eccentricity, or its odd
precedence, the comma operator is commonly misinterpreted.

Similar to post-increment/decrement, these operators change a variable’s value by one. In contrast to the
other operators, pre-increment/decrement first update the variable then return the new value.

The semantics of a predicate are easily mistaken. The most common example happens when assignment is
used inside a predicate or when a success state is represented as 0.

When a variable is used in different roles in a program, its current meaning can be difficult to follow.
When control statements omit curly braces, the scope of their influence can be difficult to discern.

printf("%d",013)

int V1 =1
#define M1 1

+ 1;

#define M1 64-1
2xM1

V1l =V2 = 3;
V1 && F2();

V1 = V2++;

(double) (3/2)

1["abc"]

V2 = (V1==3)?72:V2

06881 |2

V3 = (V1 += 1, V1)

V1 = ++V2;

if (4 % 2)

argc = 7;
if(V) FO; 60);

printf("%d",11)

#define M1 1
int vi =1+ 1;

2x64-1
V2 = 3;
V1 = V2;

if (V1) F2();

V1l = V2;
V2 4= 1;
trunc(3.0/2.0)

"abc"[1]

if (V1 == 3)
V2 = 2;
(0 & 1) || 2

V1l += 1;
V3 = V1;
V2 += 1;
V1 = V2;
if (4 %2 !=0)

int V1 = 7;
if (V){F();}G();

Candidates which eventually failed to meet statistical significance

Dead, Unreachable,
Repeated
Arithmetic as Logic

Pointer Arithmetic

Constant Variables

Redundant code is executed to no functional effect, but its appearance may imply that meaningful changes
are being made.

Arithmetic operators are capable of mimicking any predicate formulated with logical operators. Arithmetic,
however, implies a non-boolean range, which may be confusing to a reader.

Pointers admit several operations like integer addition/subtraction, but, in many cases, these operations are
interpreted by the reader to effect the target data instead of the pointer data.

Constant variables are a layer of abstraction that emphasize a concept rather than a particular value itself.
When trying to hand evaluate a piece of code having a layer of indirection can obscure the value of the data.

Vi =1,
V1 =2;
(V1-3) * (v2-4)

"abcdef"+3

int V1 = 5;

printf("%d", V1)

V1 =2;

V1!=3 && V2!=4

&"abcdef"[3]

printf("sd", 5);

how the modulo operator worked, we would avoid an expression
like 8 % 3. In this example if a subject confused % with / they
would still get the correct result (2) for the wrong reason. Instead,
we would be better served choosing values like 8 % 2 that result in
a different value when interpreted as division, as opposed to mod-
ulo. This type of design allows us to infer the cause of the confusion
for the subjects. By analyzing the different submitted answers, we
are able to reverse engineer probable causes and misconceptions
that lead to the subjects’ incorrect understanding.

5.2 Statistical Analysis

Using the data gathered in the pilot we ran a power analysis to
determine the ideal sample size for our experiment. We set our
Beta (1 - acceptable likelihood of a type II error) at § = 0.8, Alpha
(acceptable likelihood of a type I error) at @ = 0.05. Effect size was
calculated using the ¢ (phi) equation for 2x2 X? tables. Our power
analysis indicated that, for the atom in our pilot with the smallest
effect size, Constant Variable, we would need 73 subjects.

Results were analyzed using McNemar’s test of marginal homo-
geneity [31] and adjusted using the Durkalski [16] correction for
correlated data as provided by the R package clust.bin.pair [20]. Mc-
Nemar’s test is used for experiments where subjects are tested on

paired questions. We applied the Durkalski correction for clustered
data since each subject received two pairs of questions for each
atom. Because a subject is likely to answer similarly on both of the
pairs, these data are correlated.

The McNemar test reports a chi-squared statistic that can be
used to derive a p-value and effect size. The p-value will tell us the
probability that our results occurred in a case where there was truly
no underlying effect (i.e., the p-value tells us how likely we are to
collect data like ours if atoms actually are not more confusing than
regular code). Effect size is a standard statistical tool to measure
how large of an impact a phenomenon has. The effect size takes
into account the magnitude and sample size of a series of events
and allows for comparison with results from other domains.

5.3 Results

Atoms of confusion caused considerable confusion among our sam-
pled programmers. The difference in subject performance in pre-
dicting outcome for code with atoms, as compared to code with the
atoms removed, is displayed in Figure 3. Our null hypothesis is that
atoms do not impact hand evaluation accuracy. When the results
of all questions from all proposed atoms are collected together, the
null hypothesis can be rejected with a p-value of p = 3.68e — 78

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

% e) s o »ongs
— °

8 ® e o L .ﬁ 7

o g_ ° 0 % o°.4

9 o.o' ® *

S5 o | e

(&) © e

S e

() g_ ,,.'o

£

O « X

8 Sq

@ -
o P

£ 34

I I I I I I
00 02 04 06 08 1.0

Atom candidate correctness

Figure 3: Subject mean performance on obfuscated vs. clarified
snippets. Subjects above the diagonal performed better on clarified
code, while those below performed better on obfuscated code.

and an effect size of ¢ = 0.36. Both these values include the atoms
that individually we cannot accept as confusing.

5.3.1 Which atom candidates can we accept as atoms? As shown
in Table 2, of the 19 atom candidates we proposed, we accepted 15
as atoms, having p < 0.05. For the 15 accepted atoms, we calcu-
lated the effect size using ¢ (the phi coefficient); Accepted values
for small, medium, and large sizes are ¢ = {0.1,0.3,0.5} respec-
tively [10]. By these guidelines, all of our accepted atoms range
from a medium to a very large effect size. This means that not
only can we confirm that atoms of confusion do confuse subjects,
but also that this confusion is very noticeable in the raw data. In
addition to p-value and effect size, we also look at differences in
raw performance percentages. The values are very correlated with
effect size, however, the magnitude is more tangible. For example,
questions that contain a Change of Literal Encoding atom enjoy a
60% boost in accuracy once the atom is removed. This lets us distin-
guish exactly how many more questions were answered correctly
in code without atoms.

Four of our atom candidates were not confirmed as more con-
fusing than their transformations. There are two potential reasons
why an atom candidate would fail to reach statistical significance in
our experiment: the candidate was not confusing, or the candidate
was confusing but so was the transformed code. Dead, Unreachable,
Repeated, Arithmetic as Logic, and Constant Variables all exhibited
relatively little confusion in both versions of the questions. Pointer
Arithmetic, on the other hand, was very confusing both before and
after atom removal. While we had tried to focus on testing whether
addition and subtraction on pointers was confusing, the results
indicate that a latent atom exists in both versions of the code. An-
alyzing the subjects’ responses indicates that many participants
struggled to even understand that arrays and strings are accessed
with a pointer to their head elements. That is to say, pointer arith-
metic is confusing, but so was the code it was compared against.
We plan to go back and explore these potential atoms in future
experiments.

Gopstein, lannacone, Yan, Delong, Zhuang, Yeh, and Cappos

Table 2: Statistical properties of atom candidates

Dispersion A Effect

Atom Name Obfs’d Clar’'d Correct Size p-value
Change of Literal Encoding 1.65 0.75 0.60 0.63 2.93e-14
Preprocessor in Statement 1.01 0.46 0.47 0.54 8.53e-11
Macro Operator Precedence 0.50 0.32 0.36 0.53 1.77e-07
Assignment as Value 0.99 0.45 0.42 0.52 3.78e-10
Logic as Control Flow 1.58 0.90 0.41 0.48 5.62e-09
Post-Increment/Decrement 131 0.52 0.34 0.45 6.98¢-08
Type Conversion 0.85 0.50 0.29 0.42 5.17e-07
Reversed Subscripts 1.71 0.93 0.23 0.40 1.52e-06
Conditional Operator 0.91 0.07 0.23 0.36 1.74e-05
Operator Precedence 0.59 0.30 0.14 0.33 5.90e-05
Comma Operator 2.02 0.76 0.23 0.30 2.46e-04
Pre-Increment/Decrement 0.95 0.82 0.16 0.28 6.89¢-04
Implicit Predicate 0.61 0.34 0.10 0.24 4.27e-03
Repurposed Variables 1.78 1.50 0.12 0.22 6.66e-03
Omitted Curly Braces 1.22 0.94 0.14 0.22 8.64e-03
Dead, Unreachable, Repeated ~ 0.19 0.06 0.03 0.16 0.059
Arithmetic as Logic 0.23 0.15 0.03 0.10 0.248
Pointer Arithmetic 1.54 1.06 0.01 0.03 0.752
Constant Variables 0.28 0.29 0.00 0.00 1.000

There is also evidence that some atoms actually represent multi-
ple different phenomena, and are thus not small, or self-contained.
For example the amalgam atom Dead, Unreachable, Repeated was
designed to capture all forms of frivolous code under the assump-
tion that they would be identically confusing. Upon analysis, our
statistics indicated that, of its three constituent patterns, only the
snippet that tested unreachable code was significant on its own.
The other two types of code (dead and repeated code) were not
meaningfully confusing. Our existing sample size did not reach a
high enough statistical power to make any decisive claims about
Dead, Unreachable, Repeated. However, our results do indicate that
there may be a difference in how people perceive different types
of redundant code, even though they are often conflated in casual
conversation. More data is needed to make a stronger claim.

Key Takeaway: Of our proposed atoms, 15 have been shown to
be more confusing than corresponding clarified code. These results
are statistically significant and the size of the effect varies from
moderate to very large.

5.3.2 Did subjects err in the same way? There is evidence that
individual atoms behave qualitatively different from each other.
By analyzing the number and character of unique answers to a
question, it became clear that the ways in which subjects were con-
fused by atoms varied. For many questions, there was one answer
that consistently seemed correct, but was not. The best example
is from the Change of Literal Encoding atom, which was framed
like printf("%d\n", 013);. For this atom, 80% of all subjects
erroneously responded that the statement would print 13, missing
that the leading zero denotes an octal value and will print 11 when
represented in base ten. This is an exemplary ‘trick’ question in
that so many subjects made the same, very understandable, error.

Other questions had a different failure mode, in which there was
a broader distribution of wrong responses. These prominent state-
ments are excerpted from an obfuscated Comma Operator snippet:

int V1 = 3;
int V2 = (V1 *= 2, V1 += 1);
printf("%sd %d\n", V1, V2);

Understanding Misunderstandings in Source Code

Out of 49 responses to this question, participants proposed 21 dis-
tinct answers. Some people seemed to assume that parentheses and
comma worked as a tuple operator, and believed the answer was
7 (6, 7) or3 6 4. Others seemed to simply forget which side
of the comma was returned with an answer of 6 7. Some even
constructed semantics whereby the comma would actually prevent
or undo state change on its left hand side with a result of 4 6.

This concept is quantified using entropy as a metric for disper-
sion, or the degree to which all answers do or do not resemble each
other. Table 2 lists the dispersion rates for both the obfuscated and
clarified programs of each atom.

Key Takeaway: There are some questions that subjects an-
swered wrong in the same way, and others they answered wrong
differently. This quality is independent of atom effect size.

5.3.3 How did question placement affect correctness. Since we
tested pairs of questions that were functionally equivalent, there
was concern that, after seeing one question of a pair, the second
would be familiar and therefore easier. We mitigated this by placing
a minimum distance between questions of a pair, but to confirm, we
inspected the results for this phenomenon. Firstly, we noticed there
was a steady increase of correct answers as participants answered
more questions. Between the first and last questions there was a
~7% increase in correct answers. This was independent of whether
or not a question was preceeded by its pair, as it occurred both in
the first and last several questions of the experiment, where the
snippets were uniformly first and second of a pair, respectively.
Adjusting for this global learning effect and whether a snippet
was obfuscated or clarified, a subject was 1% more likely to get a
question correct after seeing its pair. This effect was not statistically
significant (p = 0.88) using a one-tailed binomial test.

Key Takeaway: Subjects performed better on later questions,
but the order of questions in a pair had little to no effect.

5.3.4 Was there a speed/accuracy trade-off? In many physical
and psychological activities, there is an inverse relationship be-
tween the speed at which an activity is performed and its resulting
accuracy [18]. We expected to see a similar result in our experiment.
Our results, however, indicate the opposite. As subjects responded
quicker, the correctness of their answers increased across all snip-
pets. The mean incorrect answer took 23.5 seconds to formulate, but
the mean correct answer only 18.5. The difference was significant
(p = 3.35e—32) using the Wilcoxon rank sum test. Intuitively, this
may mean that a snippet the subject is confident about will take
less effort than a snippet the subject has to work to understand.
This also corresponds to results from our analysis on learning ef-
fect, where by the end of the experiment participants were doing
better in both performance and speed. One additional point this
data implies is that our subjects were relatively attentive. If subjects
had guessed randomly on difficult questions we would expect to
see quicker response times and poorer accuracy. The raw data, how-
ever, suggests subjects did take more time to answer more difficult
questions.

Key Takeaway: There is a positive correlation between answer
speed and correctness. The quicker a subject responded, the more
likely the were to have gotten the answer correct.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

6 ATOM IMPACT EXPERIMENT

To broaden our understanding of how multiple atoms affect larger
bodies of code, we tested their impact on larger samples from the
same source as the code snippets (Figure 4). The experiment used
winning programs from the IOCCC before and after atoms of con-
fusion were removed to test subjects’ ability to hand evaluate full
programs.

Design: Randomized Partial Counterbalanced

Sample: 43 programmers with > 6 months C/C++
experience.

Control: Small programs (between 14-84 lines) containing
several atoms of confusion.

Treatment: A version of the control code transformed to
remove the atoms of confusion.

Null Hypothesis Hy: Code from both control and treatment
groups can be hand-evaluated with equal accuracy.
Alternative Hypothesis H,: Multiple atoms of confusion
cause more errors in hand-evaluated outputs than other code.

Figure 4: Summary of the Atom Impact Experiment

6.1 Design

Participants were instructed to “step through the program as if you
were the computer, executing each instruction..” and to “...record the
standard output of the program”.? The experimental programs were
modified to include a printf after every control flow operation
and otherwise frequently enough to gather information from the
subject. Every line of output was formatted as label: varl var2

..., and forced subjects to relay their conception of the state of
each modified piece of memory in the program. Each element of
each line of human-generated output was scored as either correct
or incorrect. For example, a line with a label and 3 parameters
could garner up to 4 points for participants if they were to write the
entire line correctly. A point was subtracted for each wrong element.
Every program had several lines of output that each subject was
expected to evaluate and record, and the combined score of all the
lines from a single program formed the subject’s score.

We chose four of the shortest IOCCC winners, so that we had
data points from different confusing programs. We selected these
programs from the first, last, and two intermediate years of the
contest’s operation. Each program was normalized by the same pro-
cess described in Section 3, removing non-C99 compliant code and
out-of-scope sources of confusion. These normalized — but other-
wise unaltered - programs served as our control questions, and are
referred to as our obfuscated questions. Our treatment questions
were created by removing each atom through an atom removal
transformation. These programs as referred to as our clarified ques-
tions. Each participant was shown 4 programs, half of which were
from the control set, and the other half from the treatment set. No
one received two versions of the same program. The order and
distribution of questions was randomly generated and assigned to
subjects.

2Complete instructions can be found at https://atomsofconfusion.com/2016-program-study

https://atomsofconfusion.com/2016-program-study

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

We recruited programmers with at least 6 months of C or C++
experience. Before running our experiment we conducted a pi-
lot with 10 subjects. We calculated our necessary sample size for
the experiment by estimating the required power to find statisti-
cally significant differences between the responses of an obfuscated
program and its corresponding clarified program. Our analysis sug-
gested we needed 40 samples to reach a nominal power of § = 0.8
with a type I error rate of & = 0.05. In total, we collected samples
from N = 43 participants, slightly exceeding our target.

6.2 Analysis

Results were graded dynamically for each test using a program
that attributed partial credit to each response, described as follows.
If a participant made an error and misinterpreted the value of a
variable, the grader program would dock the appropriate number
of points, but then modify the original program to continue us-
ing the subject’s conception of the current state. This method has
the advantage of avoiding the accumulation of intermediate errors.
For some programming mistakes, one error early in the program
would cause a subject to incorrectly write every line of output
that follows. Instead we only penalize each error once. As a re-
sult, the total number of measurements per participants is variable,
and direct comparisons between individual responses are difficult.
Consequently, we make our analyses based on the rate of correct
output provided by the subject instead of by the total number of
points scored. Where participants failed to reach the halt state of
the program, we deducted points for every missed output until
the standard termination of the program. Using correctness rates
over the evaluation output from each subject, we compared the
results from obfuscated and clarified programs. We used a one-
tailed Welch’s t-test to show the level of significance between mean
correctness rates from programs that contained atoms of confusion
as opposed to programs that did not.

6.3 Results

6.3.1 Are clarified programs evaluated more accurately than ob-
fuscated programs? Our results are displayed in Figure 5. Looking
at all obfuscated programs compared against all clarified programs,
we can see that participants had (statistically significant) higher
error rates on the obfuscated programs. These results are mirrored
in each of the individual programs. In every question pair, the clari-
fied program was answered with significantly more accuracy than
the obfuscated version. However, there is a large variance between
the scores for various programs. Question 1 had the lowest scores
overall and Question 2 had the highest. Even in this most extreme
example, the clarified version of Question 1 was answered correctly
at a higher rate than the obfuscated version of Question 2. Every
clarified question was, on average, easier to interpret than every
obfuscated question. The trend continues on a per-subject basis.
The subjects performed better on clarified questions by an almost
8:1 ratio, and did so by a 3.4x margin in raw score.

Key Takeaway: Subjects’ mean correctness increased by more
than 50% between obfuscated (0.47) and clarified (0.73) programs.

6.3.2 What other ways can we measure subject performance?
Outside of the primary grading metric, there were several other

Gopstein, lannacone, Yan, Delong, Zhuang, Yeh, and Cappos

Obfuscated O Clarified O
1.0 - - -
o o
-
e i
0.8 : : ! !
A R ; o
O 06 S ¢
c ' -
- N p—
O : -
o . . :
S 04 - o+
O ° °
0.2 p— ® . -
0.0 s s . e
All Q1 Q2 Q3 Q4
p: 2.34e-08 p:0.0352 p:0.0014 p:0.0003 p:0.0003
d: 0.88 d: 0.57 d: 0.99 d:1.18 d:1.17

Figure 5: Average score by question type. Rate of correct answers
for each program type, and for all obfuscated and clarified programs
combined. p denotes p-value and d denotes Cohen’s d effect size.

Failures Successes
8‘22: Obfuscated [[0.20 7 r
o N Clarified O © 0154 L
5 0.20 - r =5 .
o 0157 r O 010 +
0.10 +
0.05 + 0.05 7 r
Give Ups Control Points Totally
Flow Errors Answered Correct

p=0.0001 p=0.0021 p=0.0020 p=0.0084

Figure 6: Secondary statistics regarding subjects’ behavior

indicators that suggested atoms reduced comprehension for partic-
ipants. Several secondary metrics are graphed in Figure 6. While
all evaluation errors were graded equally and errors were propa-
gated to reduce the cumulative effect of a misunderstanding, some
errors had a larger deviating effect on the participants’ evaluation.
Whenever a subject accidentally followed a wrong flow control
path through the code, almost all following results were incorrect.
These flow control errors happened roughly 3 times as often in
obfuscated programs. Participants were given the option of giving
up on a question, and code with atoms caused people to give up
3.5 times as often as code without. Moreover, excluding programs
where participants explicitly gave up, the subjects also provided sig-
nificantly fewer lines of output on obfuscated programs, skipping
more than twice as many output points as in clarified programs.
Errors in the responses were extremely common, but several partic-
ipants were able to accurately evaluate entire programs. Clarified
programs were correctly evaluated five times more often than the
obfuscated originals. Each of these differences is statistically sig-
nificant, showing that programmers are confused by atoms across
many different metrics.

Understanding Misunderstandings in Source Code

o o™ o
< — — — < —
1 1 1 1l 1 1l
< = = [= <
1.0 .
Q R
- . .
T e - R
ox O - B 8
? o
Q e =
Q o6] L
© 3
) = L g
= 04 :
o gy
@) : et
0.2 :
T T T T T T
1 2 3 4 5 6
(novice) (expert)

Figure 7: How well each subject performed on the atom im-
pact experiment, relative to their perception of their knowl-
edge of C/C++

Key Takeaway: Motivation and time-on-task was increased in
programs with atoms removed, as subjects gave up 71% less often
and wrote 32% more output.

6.3.3 Which code was still confusing in clarified programs? We
removed many atoms from the programs in the atom impact ex-
periment. Yet, even after all known atoms were removed, subjects
still had a 27% error rate on clarified programs, indicating some
source of confusion remains in the clarified programs. By observ-
ing where confusion happened in the clarified programs, we can
discover new atom candidates to test in the future. One of the most
common errors in clarified programs was a misunderstanding of
how C initializes global variables, with many subjects insisting the
value would be “garbage”, even though C99 states in Section 6.7.8,
p10 “If an object that has static storage duration is not initialized
explicitly, then... if it has arithmetic type, it is initialized to (positive
or unsigned) zero” [1]. This is not an unknown phenomenon. In fact,
the Indian Hill C Style and Coding Standards [8] recommends using
explicit, rather than implicit variable initialization.

Key Takeaway: Removing atoms from a program and having
subjects evaluate both versions can be used iteratively to continue
identifying new atom candidates.

6.3.4 Self Perception. After the experiment concluded, we asked
each subject “How would you estimate your proficiency in C/C++?”
In aggregate, the subjects’ responses were quite accurate. The me-
dian self-evaluation for each score was monotonic with perfor-
mance, excepting the singular response in which someone self-
identified as “Expert”, while their performance suggested less com-
petence (Figure 7).

Key Takeaway: Subjects’ beliefs about their proficiency corre-
lated well with their performance.

7 DISCUSSION

Here we explore the bigger picture. Now that we have identified
confusing code patterns, how well are they addressed by expert
recommendations? Are there any discrepancies between their ex-
perience and our results? And how generalizable is our work?

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

7.1 Which atoms are missing from popular
style guidelines?

We surveyed several modern and classic C style guides [9, 15, 19, 26,
34, 39, 41] to find references to patterns we have identified as atoms
of confusion. Of the 19 patterns we proposed, 15 were explicitly
mentioned. Two of the four unmentioned candidates did not meet
statistical significance, but the other two — Reversed Subscripts and
Preprocessor in Statement — had moderate and very large effect
sizes, respectively. We conducted a preliminary analysis of the
Linux kernel source code to count how often these atoms occur
in practice. Though we found no instances of Reversed Subscript
atoms, there were thousands of occurrences of the Preprocessor in
Statement. Given that Preprocessor in Statement is the second most
potent atom, it is a topic that ought to be acknowledged in code
comprehension literature.

Key Takeaway: Style Guidelines have overlooked some very
confusing patterns that are used in practice.

7.2 Where do our results differ from style
guide recommendations?

The majority of advice in popular style guides seems sound, and our
results largely match their recommendations. However, there were
a few instances where we either could not confirm their position,
or found evidence to contradict it.

Assignment as Value: GNU coding standards [39] say “assign-
ments inside while-conditions are ok”. Our data shows a 38% in-
crease in the number of correctly evaluated assignments when
moved from inside the while-condition to outside.

Pointer Arithmetic: Rob Pike [34] proposed that, “An expression
that evaluates to an object is inherently more subtle and error-prone
than the address of that object”. In our experiment, subjects were
slightly more likely to make errors while evaluating pointer nota-
tion than subscript notation. While there is not enough statistical
power to draw any firm conclusions, it is not obvious that pointers
are less confusing than “expressions that evaluate to objects”.

Omitted Curly Braces: The Linux style guide states, “Do not
unnecessarily use braces where a single statement will do”, [41]
and the NASA C Style Guide [15] omits braces in every single-line
selection example, except when demonstrating explicitly dangerous
constructs. Our results show that our subjects made 22% more errors
when braces were omitted.

Conditional Operator: Kernighan and Pike [26] argue “the ?: op-
erator is fine for short expressions where it can replace four lines
of if-else with one”. In our data, which only includes “short expres-
sions”, ?: leads to 31% more errors than if-statements.

Key Takeaway: At least five popular style guides encourage or
fail to warn against confusing patterns used in large projects.

7.3 Did subject experience have an effect?

Our experiment was conducted on a sample composed largely of
students. Based on prior work, we thought it was possible that the
subjects’ low experience might affect their performance. In Jones’
investigation of developer beliefs about binary operators [25], he
tested for a correlation between the subjects’ years of experience
and the accuracy of their responses. His results showed no statisti-
cally significant relationship between experience and performance.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Existence Experiment Impact Experiment

o o
— - 7
o .
‘e :..
4 v @ .
(] . (] P
g o |4 g o |7
§ 8- AR
S . S .
o . (@]
r=0.48 r=0.14
o | o
o T T T T T T o T T T T T T
0 2 4 6 8 10 0 5 10 15 20 25

Years of C experience Years of C experience

Figure 8: The correlation between experience with C and per-
formance. Trends modeled as monomials.

In both of our experiments, however, there is a small to moderate
correlation between years of experience with C and performance.
Figure 8 shows the relationship between these variables. Since our
methods use a matched pair design that compares a participant’s
answers only against his/her own, the effects of experience do
not impact the internal validity of our methods. Since the average
professional software engineer has more experience than our aver-
age subject, the effect sizes reported may be overstated for some
populations.

We also analyzed whether the class of errors were different (i.e
did more experienced subjects get any questions wrong that less
experienced subjects answered correctly?). Ultimately, we found
that incorrect answers were roughly monotonic with experience.
As experience increased, subjects got fewer and fewer questions
wrong, and the hardest questions were answered incorrectly by
everyone. These results mirror those of Dolado et al. [14].

Key Takeaway: Subjects with more experience make fewer
errors than subjects with less experience.

8 THREATS TO VALIDITY

We took measures to ensure scientific rigor where possible, both
in the design and execution of our experiments. Here we describe
remaining issues, potential and existent.

Threats to Internal Validity. Despite our best efforts, our data
indicates that some of our obfuscated code still contained sources
of confusion (e.g. in Pointer Arithmetic snippets). This results in ar-
tificially low effect sizes for otherwise potentially confusing atoms.
In cases where there is a high rate of confusion in obfuscated code,
our data could be improved by simplifying the question subjects
are asked to solve.

The process of initially choosing atom candidates is inherently
subjective and it is possible that a different team would have se-
lected different candidates. Since candidates were later subjected
to rigorous validation, our approach is not overly likely to yield
‘false positives’, yet it is susceptible to false negatives (e.g. the mis-
understanding of global variable initialization described in Section
6.3.3). This process does, however, leave room to test new atom
candidates for future experiments.

We collected data on the number of months/years our subjects
had been programming in C. It is a usable, but not ideal proxy for
experience. In future experiments we plan to ask more nuanced
questions regarding programming experience.

Gopstein, lannacone, Yan, Delong, Zhuang, Yeh, and Cappos

Threats to External Validity. Our atoms were drawn from an
obfuscated code contest which is quite different from most other
codebases. This fact does call into question whether these atoms
exist in more pragmatic projects. Preliminary work in this direction
by the authors indicates that some atoms do occur frequently in
popular open source projects. In total we’ve found hundreds of
thousands of atoms in gcc and the Linux kernel. As we continue
to uncover data on this topic it will be periodically released to
https://atomsofconfusion.com/2017-atom-finder.

To reduce confounding factors, we prohibited the use of any ex-
ternal resource, which may make our results less applicable to how
the programmers actually work. Without imposing such bound-
aries, however, it is difficult to tell how much of the observed effect
is inherent to the programmer.

In a related decision, our normalization steps may have produced
code that looks less like that typically produced by a programmer.
The degree to which atoms affect readers in the context of higher-
level information is still unknown.

Our subjects were drawn largely from university students and
do not represent the population of all programmers. While the
existence of atoms of confusion is shown by our subjects, it would
be prudent not to assume atoms work the same way for everyone.

9 CONCLUSION

We used two experiments to evaluate small patterns in code that
can produce confusion in programmers. We showed experimentally
that many code patterns increase misunderstanding at a statisti-
cally significant rate versus equivalent code without the pattern.
We also showed that removing these code patterns had a substan-
tial impact on a programmer’s ability to understand larger code.
Our results provide evidence both for and against common coding
recommendations, and suggest a new method to expand on existing
guidelines. It also suggests some interesting topics for exploration:

e A more complete list of atoms can be generated by repeating
the atom discovery process from the clarified programs in
our atom impact experiment. Subsequent iterations of this
process can benefit from the quantitative data gathered in
prior experiments.

o Using the atoms described here, large open source projects
can be audited for their use of atoms of confusion.

o This methodology can be applied to languages other than C
to improve guidelines and find cross-language similarities.

e The cause of atoms can be explored using HCI techniques
to understand why programmers make the mistakes they
make, and how these can be prevented.

To encourage other researchers to replicate our work or ex-
plore related questions, our materials and data are available at
https://atomsofconfusion.com.

ACKNOWLEDGEMENTS

We would like to thank Xiangren “Jack” Chen and Hongwei “Henry”
Zhou for helping create our instrument and analysis tools. We are
grateful to Kristen Walcott and Frank Ritter for helpful sugges-
tions towards improving our paper. Lastly, this work would not be
possible without the IOCCC and all of the participants in our exper-
iments to whom we are very thankful for their time and effort. This
work was supported in part by NSF grants 1444827 and 1513457.

https://atomsofconfusion.com/2017-atom-finder
https://atomsofconfusion.com

=

=

Understanding Misunderstandings in Source Code

REFERENCES

[1] 1999. IEC 9899: 1999: Programming languages C. International Organization for

Standardization (1999), 243-245.

Eran Avidan and Dror G Feitelson. 2015. From obfuscation to comprehension. In
Program Comprehension (ICPC), 2015 IEEE 23rd International Conference on. IEEE,
178-181.

Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In Proceedings of the 2013 International Conference
on Software Engineering. IEEE Press, 712-721.

Mike Bland. 2014. Finding more than one worm in the apple. Commun. ACM 57,
7 (2014), 58-64.

Maarten AS Boksem, Theo F Meijman, and Monicque M Lorist. 2005. Effects of
mental fatigue on attention: an ERP study. Cognitive Brain Research 25, 1 (2005),
107-116.

Dennis Burke. 1995. All circuits are busy now: The 1990 AT&T long distance
network collapse. California Polytechnic State University (1995).

Raymond PL Buse and Westley R Weimer. 2008. A metric for software readability.
In Proceedings of the 2008 international symposium on Software testing and analysis.
ACM, 121-130.

LW Cannon, RA Elliott, LW Kirchhoff, JH Miller, JM Milner, RW Mitze, EP Schan,
NO Whittington, Henry Spencer, David Keppel, and others. 1991. Recommended
C style and coding standards. Pocket reference guide. Specialized Systems Con-
sultants.

LW Cannon, RA Elliott, LW Kirchhoff, JH Miller, JM Milner, RW Mitze, EP Schan,
NO Whittington, Henry Spencer, David Keppel, and others. 1991. Recommended

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

version 0.0.6.

John Graham-Cumming. 2017. Incident report on memory leak
caused by Cloudflare parser bug. (2017). https://blog.cloudflare.com/
incident-report-on-memory-leak- caused-by-cloudflare- parser-bug/ [Online;
accessed 2017-02-23].

Maurice Howard Halstead. 1977. Elements of software science. Vol. 7. Elsevier
New York.

J-M Jazequel and Bertrand Meyer. 1997. Design by contract: The lessons of Ariane.
Computer 30, 1 (1997), 129-130.

Stephen C Johnson. 1977. Lint, a C program checker.

Derek M. Jones. 2006. Developer beliefs about binary operator precedence. (2006).
Brian W Kernighan and Rob Pike. 1999. The practice of programming. Addison-
Wesley Professional.

Bennet P Lientz, E. Burton Swanson, and Gail E Tompkins. 1978. Characteristics
of application software maintenance. Commun. ACM 21, 6 (1978), 466-471.
Jacques-Louis Lions and others. 1996. Ariane 5 flight 501 failure. (1996).
Lindsay Marshall and James Webber. Gotos considered harmful and other pro-
grammers taboos.

Thomas] McCabe. 1976. A complexity measure. Software Engineering, IEEE
Transactions on 4 (1976), 308—320.

Quinn McNemar. 1947. Note on the sampling error of the difference between
correlated proportions or percentages. Psychometrika 12, 2 (1947), 153-157.
James H Neely. 1991. Semantic priming effects in visual word recognition: A
selective review of current findings and theories. Basic processes in reading: Visual
word recognition 11 (1991), 264-336.

C style and coding standards. Pocket reference guide. Specialized Systems Con- [33] Landon Curt Noll, Simon Cooper, Peter Seebach, and A Broukhis Leonid. 1984.
sultants. Rules. (Mar 1984). http://www.ioccc.org/1984/rules
[10] Jacob Cohen. 1988. Statistical Power Analysis for the Behavioral Sciences. 2nd [34] Rob Pike. 1989. Notes on Programming in C. URL http://www. lysator. liu.
edn. Hillsdale, New Jersey. (1988). se/c/pikestyle. html 2 (1989), 4.
[11] Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A taxonomy of [35] Jarrett Rosenberg. 1997. Some misconceptions about lines of code. In Software
obfuscating transformations. Technical Report. Department of Computer Science, Metrics Symposium, 1997. Proceedings, Fourth International. IEEE, 137-142.
The University of Auckland, New Zealand. [36] Jinggiu Shao and Yingxu Wang. 2003. A new measure of software complexity
[12] Thomas A Corbi. 1989. Program understanding: Challenge for the 1990s. IBM based on cognitive weights. Electrical and Computer Engineering, Canadian

Systems Journal 28, 2 (1989), 294-306.

[13] Edsger W Dijkstra. 1968. Letters to the editor: go to statement considered harmful. [37
Commun. ACM 11, 3 (1968), 147-148.

[14] José Javier Dolado, Mark Harman, Mari Carmen Otero, and Lin Hu. 2003. An
empirical investigation of the influence of a type of side effects on program [38
comprehension. Software Engineering, IEEE Transactions on 29, 7 (2003), 665-670.

[15] Jerry Doland and Jon Valett. 1994. C Style Guide. (1994). NASA.

Journal of 28, 2 (2003), 69-74.

Forrest J Shull, Jeffrey C Carver, Sira Vegas, and Natalia Juristo. 2008. The role of
replications in empirical software engineering. Empirical Software Engineering
13, 2 (2008), 211-218

Janet Siegmund, Christian Késtner, Sven Apel, Chris Parnin, Anja Bethmann,
Thomas Leich, Gunter Saake, and André Brechmann. 2014. Understanding
understanding source code with functional magnetic resonance imaging. In

[16] Valerie L Durkalski, Yuko Y Palesch, Stuart R Lipsitz, and Philip F Rust. 2003. Proceedings of the 36th International Conference on Software Engineering. ACM,
Analysis of clustered matched-pair data. Statistics in Medicine 22, 15 (2003), 378-389.
2417-2428. [39] Richard Stallman and others. 1992. GNU coding standards. (1992).
[17] James L Elshoff and Michael Marcotty. 1982. Improving computer program [40] Yahya Tashtoush, Zeinab Odat, Izzat Alsmadi, and Maryan Yatim. 2013. Impact
readability to aid modification. Commun. ACM 25, 8 (1982), 512-521. of programming features on code readability. (2013).
[18] Paul M Fitts. 1954. The information capacity of the human motor system in [41] Linus Torvalds. 2001. Linux kernel coding style.
controlling the amplitude of movement. Journal of experimental psychology 47, 6 https://www.kernel.org/doc/Documentation/CodingStyle (2001).
(1954), 381. [42] William Wulf and Mary Shaw. 1973. Global variable considered harmful. ACM
[19] Martin Fowler. 2009. Refactoring: improving the design of existing code. Pearson Sigplan notices 8, 2 (1973), 28-34.
Education India. [43] Sheng Yu and Shijie Zhou. 2010. A survey on metric of software complexity. In

[20] Dan Gopstein. 2016. clust.bin.pair: Statistical Methods for Analyzing Clustered
Matched Pair Data. https://CRAN.R-project.org/package=clust.bin.pair R package

Information Management and Engineering (ICIME), 2010 The 2nd IEEE International
Conference on. IEEE, 352-356.

extern int
errno
;char
grrr
;main(r,
argv, argc) int argc ,
r ; char xargv[];{int P();
#define x int i, j,ccl4];printf(" choo choo\n")
x ;if (PC ! i) | cc[! i1
& P(j)>2 ? j : i){x argv[i++ +!-i]
; for (i= 0;; it++);
_exit(argv[argc- 2 / ccl[lxargc]|-1<<4]) sprintf("%sd",P(""));}}
P a) char a HE a while(a > " B "

/* - by E ricM arsh all- x/); }

https://CRAN.R-project.org/package=clust.bin.pair
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
http://www.ioccc.org/1984/rules

	Abstract
	1 Introduction
	2 Related Work
	3 Definitions
	3.1 Normalization
	3.2 Transformation

	4 Identified Atoms
	5 Atom Existence Experiment
	5.1 Experimental Conditions
	5.2 Statistical Analysis
	5.3 Results

	6 Atom Impact Experiment
	6.1 Design
	6.2 Analysis
	6.3 Results

	7 Discussion
	7.1 Which atoms are missing from popular style guidelines?
	7.2 Where do our results differ from style guide recommendations?
	7.3 Did subject experience have an effect?

	8 Threats To Validity
	9 Conclusion
	References

