
Vulnerabilities as Blind Spots in Developer’s
Heuristic-Based Decision-Making Processes

Justin Cappos
NYU

Dept. of Computer Science
and Engineering

jcappos@nyu.edu

Yanyan Zhuang
NYU

Dept. of Computer Science
and Engineering
yyzh@nyu.edu

Daniela Oliveira
University of Florida

Dept. of Electrical and
Computer Engineering

daniela@ece.ufl.edu
Marissa Rosenthal

Bowdoin College
Dept. of Psychology and Dept.

of Computer Science
mrosenth@bowdoin.edu

Kuo-Chuan Yeh
Pennsylvania State University
Dept. of Computer Science

and Engineering
yeh@cse.psu.edu

ABSTRACT
The security community spares no effort in emphasizing security
awareness and the importance of building secure software. How-
ever, the number of new vulnerabilities found in today’s systems
is still increasing. Furthermore, old and well-studied vulnerability
types such as buffer overflows and SQL injections, are still repeat-
edly reported in vulnerability databases. Historically, the common
response has been to blame the developers for their lack of secu-
rity education. This paper discusses a new hypothesis to explain
this problem by introducing a new security paradigm where soft-
ware vulnerabilities are viewed as developers’ blind spots in their
decision making. We argue that such a flawed mental process is
heuristic-based, where humans solve problems without consider-
ing all the information available, just like taking shortcuts. This
paper’s thesis is that security thinking tends to be left out by de-
velopers during their programming, as vulnerabilities usually exist
in corner cases with unusual information flows. Leveraging this
paradigm, this paper introduces a novel methodology for capturing
and understanding security-related blind spots in Application Pro-
gramming Interfaces (APIs). Finally, it discusses how this method-
ology can be applied to the design and implementation of the next
generation of automated diagnosis tools.

1. INTRODUCTION
Despite the security community’s emphasis on the importance of
secure software, the number of new vulnerabilities found in to-
day’s systems is still increasing. According to the 2014 report by
Symantec Internet Security [1], almost 7000 new vulnerabilities
occurred in 2013. In addition, vulnerabilities that have been stud-
ied for years, such as buffer overflows and SQL injections, are still
commonly reported. The inability to properly address security is-
sues indicates that security problems will continue have impact for
the foreseeable future.
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
NSPW’14 September 15 - 18 2014, Victoria, BC, Canada
Copyright 2014 ACM 978-1-4503-3062-6/14/09...$15.00
http://dx.doi.org/10.1145/2683467.2683472

Historically, a common response has been to blame the developers
for their lack of security education. For example, in referring to
the cause for the SQL injection issues that have lead to password
database disclosures, one response was “[T]he popularity of the
language has led to the rapid deployment of PHP sites and PHP-
based content management systems by people who lack an educa-
tion in web application security. Even though the risk of SQL injec-
tion in PHP should be fairly well understood, some organizations
still end up deploying code that doesn’t implement proper security
controls” [2]. Decrying the lack of security education, and thus
blaming the developer, is easy to do in the case of a vulnerability.

This paper proposes a new security paradigm where software vul-
nerabilities are viewed as blind spots in developer’s heuristic-
based decision-making processes. This paper’s thesis is that the
nature of insecure software and increasing number of well-studied
vulnerabilities lies in the developers’ mental processes. Instead of
criticizing the lack of security education from the developer’s part,
we argue that the problem is that developers use heuristics during
their everyday programming tasks. Heuristics are unconscious hu-
man actions that do not use all information available to reach a
particular decision or course of action, just like taking shortcuts.
When applied to everyday programming tasks, heuristics do not in-
clude security or vulnerability information, because software vul-
nerabilities represent uncommon cases not completely understood
by developers and exercise unusual information flows. As a result,
security thinking is usually left out from developer’s heuristics.

It is known in psychology that humans have been hardwired dur-
ing thousands years of evolution for employing shortcut, heuristic-
based decision-making processes [3, 4]. When faced with many
choices, possibilities, and information, humans become over-
whelmed and begin to make sub-optimal decisions due to their
short working memory [5, 6]. Heuristics are an adaptive human
response in such an environment. However, they can lead to errors
with deleterious consequences.

Based on this security paradigm, this paper introduces a new
methodology to capture, understand, and address security-related
blind spots in Application Programming Interfaces (APIs). APIs
are a large avenue for blind spots with great impact in software
security because they are often leveraged by developers from out-
side groups. A developer assumes a certain API behavior, which

53

does not hold in special cases or across different implementations
of the API. In this paper such a misconception is called a blind spot,
which often creates security vulnerabilities in software leveraging
the API.

The main idea of the proposed methodology is to identify areas in
APIs where the API behavior expectation for the API designer and
the application developer who uses the API diverge. The behav-
ior expectation of an API is a person’s intuitive perception about
the input to an API (causes), and the corresponding output (conse-
quences). A blind spot is a divergence of the behavior expectation
of the API designer and the application developer. It is similar to a
blind spot in a vehicle, an area that cannot be directly observed by
the driver and can potentially lead to hazards.

The methodology described in this paper specifically targets
security-related blind spots in APIs. It focuses on APIs because
they are particularly amenable to analysis: (i) they prescribe the
methods by which a program interacts with external data, (ii)
human-readable information such as documentation is frequently
available about its behavior, (iii) there are common tools and tech-
niques to log API calls and return values (e.g., at the application
and the OS level), and (iv) misunderstandings about API behavior
are often the root cause of security vulnerabilities.

This methodology leverages cognitive puzzles to capture, under-
stand, and address blind spots in APIs. To get meaningful blind
spot data for analysis, a large set of cognitive puzzles is gener-
ated from reports found in vulnerability databases and bug track-
ers. A cognitive puzzle is an exhibit question, which sharpens a
respondent’s concentration by asking them to respond to a specific
artifact. In this methodology, a puzzle is a question about a snip-
pet of code capturing the vulnerability with extraneous information
removed and necessary context information added. Sets of puz-
zles representing real vulnerabilities are distributed to developers
through automated online surveys. After developers’ answers to
the puzzles are collected, they are statistically analyzed to find the
actual blind spots, their features and correlations among each other.
If open-ended questions are also employed in the puzzle session,
they can be analyzed with standard qualitative research triangula-
tion methods [7] to increase the confidence of results interpretation.
The features collected about blind spots can be used to build a su-
pervised learning model [8] to find other blind spots in the same
API. Figure 1 shows a high level view of the methodology.

This methodology can be leveraged to build automated tools to di-
agnose blind spots in APIs and perform other types of analyses,
such as blind spot classification and estimation of the likelihood
that an API contains a certain set of blind spots. Blind spot knowl-
edge can also be employed in automatic tools that cue developers
on-the-spot about blind spot functions in an API during coding.
Using a better understanding of blind spots, these tools can ana-
lyze program behavior with the blind spots that developers create
mentally and use practically. This knowledge can also lead to a
better understanding of how to design and construct APIs that have
as few blind spots as possible, which will reduce the occurrence of
vulnerabilities.

In summary, this paper has the following contributions:

1. A new security paradigm that views software vulnerabilities
as blind spots (biases) in the heuristic-based decision making
processes used by developers.

2. A methodology leveraging this paradigm for capturing, un-
derstanding and addressing blind spots in APIs.

3. A discussion of how such methodology can be applied in the
design of the next generation of automated tools for vulner-
ability prevention, detection and analysis in code leveraging
APIs.

This paper is organized as follows. Section 2 discusses the
heuristic-based decision making processes used by humans and
how it relates to software vulnerabilities. Section 3 describes
in details the proposed methodology for capturing, understanding
and addressing blind spots in APIs. Section 4 discusses how this
methodology can be leveraged to build automated diagnosing tools
for APIs. Section 5 discusses related work. Section 6 summarizes
the paper’s lively discussion among the NSPW attendees. Finally,
and section 7 concludes the paper.

2. SECURITY PARADIGM: HEURISTICS
AND VULNERABILITIES

Psychology research has shown that during evolution, humans
have become hardwired for shortcut and heuristic-based decision-
making processes [3]. Heuristics are cognitive processes that peo-
ple use to make judgments, decisions and perform tasks [9]. They
are simple computational models that allow one to quickly find fea-
sible solutions and that do not necessarily use all information avail-
able. Heuristics represent an alternative to optimization models that
use all information available and always compute the best solution.

As psychological processes, heuristics are very useful as they re-
quire less cognitive effort to perform a particular task. Humans
have a short working memory, which makes some cognitive pro-
cesses difficult [10] when they are confronted with too much in-
formation, possibilities, and choices. In such cases, humans em-
ploy sub-optimal decision-making processes and tend to make mis-
takes [5]. This argument is reinforced by Zipf’s principle of least
effort [11], which states that people use as little effort as necessary
to solve a problem. Heuristics are an adaptive response to human’s
limited working memory. They tend to have high predictive accu-
racy, especially when information is scarce, but they can lead to
severe biases and errors [9] in decision making and ensuring cor-
rectness of tasks.

Kieskamp and Hoffrage [12] also argue that under time pressure,
a common situation in software development environments, people
tend to adopt heuristics that are even simpler, and that do not re-
quire much integration of information. According to Thorngate [9],
people tend to ignore information or leverage a small amount of
information in their heuristics because (i) they do not notice cer-
tain issues of a particular problem, (ii) they do not care about the
problem being solved that much, (iii) there are small or infrequent
decrements in reward that result from their ignorance or misuse of
relevant information about the problem in hand, and (iv) the time
and effort to use it properly may be more costly than any decrease
in payoffs associated with their occasional sub-optimal choices.

The security paradigm introduced in this paper views software vul-
nerabilities as blind spots (biases or errors) in developer’s heuristic-
based decision-making processes. In other words, developers in-
troduce vulnerabilities in software because they use heuristics to
make decisions and perform their tasks. When program develop-
ers are constantly making heuristic-based decisions, consciously or
unconsciously, these heuristics are mostly about finding a solution

54

or an efficient solution to a particular problem. As software vulner-
abilities lie in corner cases and unusual information flows, security
thinking tends to be left out of the heuristics adopted by developers.

3. UNDERSTANDING SECURITY BLIND
SPOTS WITH PUZZLES

This section describes a methodology for capturing and under-
standing blind spots in APIs. This methodology is based on the
proposed paradigm that software vulnerabilities are blind spots in
developers’ heuristic-based decision making processes.

Knowledge of blind spots improves our understanding of the in-
formation developers include and leave behind while making pro-
gramming decisions. This understanding can be leveraged to im-
prove software security by building automated diagnosis tools that
focuses on these blind spots (Section 4) and designing APIs by tak-
ing into account these common developer’s biases. The proposed
methodology focuses on API blind spots because APIs are particu-
larly amenable to such type of analysis. Due to ambiguity in por-
tions of API documentations and hidden assumptions, developers
often have misconceptions about API behavior, which leads to vul-
nerabilities in software leveraging the API [13].

Specifically to APIs, the hypothesis addressed by this methodol-
ogy is that blind spots are programmer’s misconceptions about cer-
tain portions of an API and are caused by the developer’s heuristic-
based decision-making processes. The goal of the methodology is
to locate security-related blind spots and understand their causes,
where they are commonly located, and how to detect and address
them. This methodology, detailed in the next subsections, is illus-
trated in Figure 1.

Please notice that the focus of this methodology is on API-related
blind spots, which often cause vulnerabilities in software leverag-
ing the API. However, there are software vulnerabilities which are
not API-related and are not considered in the proposed methodol-
ogy. For example, consider a web application that prompts a lo-
gin authentication page. Now assume that the authentication mod-
ule provides different messages for the case of an inexistent user
name (“Invalid user name!”) and valid user name, but wrong pass-
word (“Authentication failed!"). This program contains a security
vulnerability because it allows an adversary to discover valid user
names, which facilitates later brute-force or dictionary attacks [14].
However, this type of vulnerability is out of the scope of the pro-
posed methodology. We only focus on API-related vulnerabilities,
where the vulnerability lies on a blind spot related to the behav-
ior of an API function. Classic examples of API-related vulner-
abilities are buffer overflows [15] (strcpy() function) and
Time-To-Check-To-Time-To-Use (TOCTTOU) [16] (access()
and open() functions) vulnerabilities.

This work considers software vulnerabilities as a subset of software
bugs [17]. A software bug is an error or a fault in the program’s de-
sign or implementation that causes the program to act in an unpre-
dictable or erroneous way. A general bug is usually a failure from
the part of the developer to implement certain functionality accord-
ing to the software specification of requirements. A software vul-
nerability is a weakness in the design or implementation of a piece
of software that allows it to be exploitable by an adversary in a way
that compromises security: the program integrity, the confidential-
ity of sensitive data handled by the program, or the availability of
functionality to the end users. Vulnerabilities are also a defect or
bug because they cause the software to behave in ways its develop-

ers did not intend it to behave. As security is usually not treated as
a first class citizen in most software development projects, security
requirements are seldom specified. As argued by this paradigm,
due to the heuristic-based decision-making processes adopted by
people, non-specified and non-priority aspects of software devel-
opment will likely to be left out of developers working memory.
On the other hand, if a security requirement is specified but not
met, it is considered a software defect that is not a vulnerability.
Figure 2 illustrates these relationships.

3.1 Extracting Potential Blind Spots from
Common APIs

Potential blind spots can be extracted in one of two ways. The
first possibility is to manually collect a great number of potential
blind spots in the form of vulnerabilities and bug reports from com-
mon APIs (JavaScript, POSIX, C library, etc.) as the primary data
to be analyzed. These vulnerabilities can be collected from vul-
nerability databases like SecurityFocus [18], NVD [19] and OS-
VDB [20], and bug trackers of popular software projects, such as
Firefox, Apache, Thunderbird, SeaMonkey, etc. The main idea in
this approach is to discover whether a particular blind spot is com-
mon. In essence, this is checking to see if known vulnerabilities
are likely to be repeated by multiple developers. In this case, all
vulnerabilities and bugs collected are very likely to be blind spots.

The second technique is to look at the possible calls to an API and
use this to find potential blind spots. One way of performing this
is to use fuzzing [21] or symbolic execution [22] to find out which
variations of parameters impact the output in non-obvious ways.
One could then derive potential blind spots for these cases and use
them to understand blind spots in general. This essentially sweeps
the space of possible blind spots and tests programmers on their
understanding. While the search space may be impractically large
for complex APIs with a great number of functions, this will have
more complete coverage than the prior technique.

3.2 Converting Vulnerabilities into Cognitive
Puzzles

After the collection phase, these potential blind spots are manually
transformed into cognitive puzzles that can capture the developer’s
understanding (or misunderstanding) about them.

A puzzle is an exhibit question, which sharpens the respondents
concentration by asking them to respond to a specific statement,
story, or artifact. The goal is to give the respondent a hint to exam-
ine and draw out a recollection, interpretation or judgement [7].
The puzzle is not a mere reproduction of a vulnerability (blind
spot). It is a short code snippet that formulates the underlying
problem in an intelligent way, exercising it, adding all necessary
context, and removing unnecessary noise. Noise is removed in a
careful way, as vulnerabilities are often located in hidden cases and
also in unusual information flows.

3.2.1 A Blind Spot and Puzzle
As an example of what a blind spot is and how its corresponding
puzzle can be generated, consider a recently reported vulnerability
in the Python urllib library that makes web applications vul-
nerable to man-in-the-middle attacks [23]. The urllib library
provides a SSL protocol API to Python applications. However,
the function urlopen (used by a client to open a SSL connection
with a server) does not validate certificates received from the server.

55

Figure 1: Capturing and understanding blind spots - Overview.

Figure 2: Software bugs and vulnerabilities.

Normally when an application (SSL client) or API checks SSL cer-
tificates, it ensures that there is a chain-of-trust from a root certifi-
cate (preloaded onto the system) to the provided certificate. While
the end-to-end encryption of SSL provides integrity and confiden-
tiality, certificate checking validates the authenticity of the site. As
a result of this vulnerability, any malicious party can provide a cer-
tificate claiming to be an official website, and the fake certificate
will be trusted.

Consider the snippet of code below from a hypothetical Python SSL
client, where the client needs to connect to a server via SSL, fetch
the certificate, check whether it is valid (signed properly) and be-
longs to the server the client is attempting to connect. Also, sup-
pose a web server exists with a valid certificate issued by a root CA
for puzzles.poly.edu.

responsefileobj = urllib.urlopen(‘https://puzzles.poly.edu’)

This code snippet can be presented to a developer as a puzzle,
where the assumptions mentioned above are provided and the fol-
lowing questions (open-ended and/or multiple choice) are asked.

1. Will the urlopen call succeed or fail? Why?

2. If the client uses the site’s IP address (1.2.3.4) instead of the
server name, will the urlopen call succeed or fail? Why?

3. What do you expect to happen if your web browser at-
tempts to establish an HTTPS connection with the host puz-
zles.poly.edu using the server name?

4. What do you expect to happen if your web browser attempts
to establish a connection over HTTPS using the server’s IP
address?

5. What happens if a web server with a self-signed certificate
for puzzles.poly.edu intercepts and services the request of the
Python SSL client above instead?

For question 1, the connection succeeds because urlopen cor-
rectly establishes an SSL connection for the given page. This
is a basic question that we expect any programmer to answer
correctly if they understand the basics of the API and SSL. For
question 2, one might expect the connection to fail because the
server will not have a certificate for its IP address. However,
the connection will succeed because urlopen does not vali-
date certificates. This questions checks whether the developer
understands how SSL works in general: the certification valida-
tion process involves checking whether the name on the certifi-
cate (puzzles.poly.edu) is the same as the host that the
client is attempting to connect via SSL (1.2.3.4). For questions
3, the SSL client is a web browser that validates certificates. As
puzzles.poly.edu will send a valid certificate during the SSL
handshake process, the connection will succeed. For question 4,
the connection will fail because the browser cannot match the host
being connected (1.2.3.4) with the server name on the certificate.
The situation described in question 5 is a classic man-in-the-middle
attack. The connection with the bogus web server will succeed
because urlopen does not validate certificates. If programmers
have a blind spot about the fact that urlopen fails to validates
SSL certificates, we would expect them to answer questions 1, 3,
and 4 correctly, but give incorrect answers for 2 and 5.

On applying such methodology, puzzles can be given to develop-
ers in three formats: multiple choice, open-ended questions, or a

56

combination of both. The use of only multiple choice questions
streamlines the analysis of the results. On the other hand open-
ended questions can provide richer insights on the nature of blind
spots.

3.3 Understanding Blind Spots
Each potential blind spot collected and transformed into a puzzle
will be related to an API function, which will have a number of
attributes, such as number, types, and order of parameters, cate-
gory (memory, I/O, string, network, etc.), frequency of changes,
and popularity. The answers to the puzzles can provide a deeper
understanding about security-related blind spots, which include:

1. Which potential blind spots are real blind spots? In
other words, which API functions have behavior not well-
understood by the majority of developers?

2. How do blind spots correlate with one another? For exam-
ple, do developers that have blind spots for memory func-
tions with a certain number and types of parameters, also
have blind spots for the same type of I/O functions from the
same API?

3. What features all blind spots have in common?
4. Which API areas, for instance, memory, I/O, string, network

etc, are more likely to cause blind spot in developers?
5. Do developers tend to make the same type of assumptions in

functions they have blind spots?

In statistics, one way to abstract a concrete problem is to extract
some features to create some abstract dimensions. In the case of
potential blind spots, examples of features are the attributes of the
API functions and developer’s score on the puzzles. Each feature
is a dimension in an abstract high-dimensional space. Statistical
methods such as Analysis of Variance (ANOVA) [24] and Princi-
pal Component Analysis (PCA) [25] can be used to analyze the
data in this space and measure correlation among data samples. In
particular, PCA can find a principal component (a vector in the
d-dimensional space) that along this vector, data points are highly
correlated. It can be used to find what developers think in common,
and how their thoughts deviate in other dimensions.

Features extracted from actual blind spots and the set of actual blind
spots can be used to train a machine learning classifier that can find
other blind spots in the studied API. This blind spot knowledge can
also be used to estimate the likelihood that an unseen API contains
a certain set of blind spots.

4. APPLICATION TO DIAGNOSIS TOOLS
This section discusses applications of the proposed methodology
to capture and understand blind spots in APIs: making use of blind
spots’s knowledge from developers to prevent, detect and analyze
vulnerabilities in software using the API. This knowledge also al-
lows for the inference of unknown blind spots in other APIs.

4.1 Blind Spot Checking
The collection of blind spot functions, their expected values ac-
cording to developers and ground-truth values specified by an API
expert can serve as input to dynamic diagnosis tools. An intuitive
direction for an automated tool for blind spot detection is to con-
struct a model capturing the characteristics of blind spots, and com-
pare this model with developer’s expectations of behaviors for the

Figure 3: Puzzles and blind spots: APIs have blind spots,
and the puzzles exercise portions of the API that are not well-
understood. These API portions may or may not have blind
spots. The proposed methodology defines as a blind spot an
area of an API not well-understood by the majority of the de-
velopers.

same API. This approach is advantageous compared to traditional
ones. By leveraging the knowledge about blind spots, such tool can
target more general APIs and can be used to check vulnerabilities in
a wide variety of applications. Rather than finding the generic root
cause of software vulnerabilities, the majority of today’s diagnosis
tools target at domain-specific problems by applying application-
specific techniques, such as log analysis [26], program system call
graphs [27], reverse engineering [28], and model checking [29].

One possibility is to compare program execution traces with blind
spots (found through the methodology described in Section 3) dur-
ing application execution. For example, with the information col-
lected about blind spots a model of blind spot functions in the API
can be built. As part of this model, the tool will have access to
which functions are actual blind spots and what values and types of
parameters indicate a misunderstanding of the API blind spot func-
tion from the developer’s part as shown at runtime. For functions
identified as blind spots, the majority (but not all) of the developers
will use the function in a way that will cause unintended conse-
quences, which can lead to vulnerabilities. These cases should be
detected and flagged by the tool at runtime.

Therefore, the blind spot model generated for APIs will cover the
portions of APIs that are not well-understood by the majority of de-
velopers. As shown in Figure 3, areas well understood are the facts
about an API that are widely recognized and accepted, and thus en-
coded in the developer’s heuristics. In the methodology proposed
here, the puzzles exercise portions of the API that may or may not
be blind spots, with the goal to find actual blind spots, i.e., portions
of an API not well-understood by the majority of the developers.

The knowledge about a particular API’s blind spots can also
be used in tools that automatically cue developers on-the-spot
about the usage of blind spot functions with examples of poorly-
understood usage. This type of tool can be integrated with IDEs
and popular coding text editors, such as VI or emacs.

4.2 Inferring Unknown Blind Spots
A promising approach to analyze and infer unknown blind spots is
to leverage Fuzzy Clustering [30] theory to estimate the likelihood
that an API contains a certain set of blind spots. The blind spots can
be discovered through the proposed methodology in Section 3. The

57

input is a particular API, which can be classified into having more
than one blind spot, with a goodness score indicating the strength
of the association between the input API and a particular blind spot.
Fuzzy Set theory [31] is particularly relevant for this problem be-
cause it allows one to define the likelihood of an element belonging
to a set, by the degree of membership.

The main idea is to categorize the features of blind spots to form
a feature space, from which feature vectors for each API and blind
spots can be created. For example, the number, type and order of
parameters, returned values and type of an API indicate the input
and output. Allocated memory, network and I/O operations are the
behavioral features of an API. These discrete features can be pro-
jected into a high-dimensional numeric space where classification
algorithms can be applied. Based on the feature vectors, the dis-
tance between the API and blind spots can be calculated according
to a membership function. The classification process takes the dis-
tance into account to determine how likely an API has a blind spot.
The assigned membership level indicates the strength of the associ-
ation between an unseen API and the severity of a particular blind
spot.

By identifying potential blind spots, this information can be used to
further examine the API using puzzles (Section 3), thus increasing
the accuracy of diagnosing tools for that particular API.

5. RELATED WORK
The security paradigm and methodology proposed leverages
knowledge from the areas of vulnerability analysis, human factors
in software development, information security perception and eco-
nomics, and automated diagnosis tools. This section discusses rel-
evant related work in these areas.

5.1 Vulnerability Studies
The first effort towards understanding software vulnerabilities ap-
peared in the 1970’s through the RISOS Project [32] and the Pro-
tection Analysis study [33]. Other vulnerability studies followed,
such as the taxonomies by Landwehr et al [34] and Aslam [35]. In
the 1990’s, Bishop and Bailey [36] analyzed current vulnerability
taxonomies and concluded that they are imperfect: depending on
the layer of abstraction that a vulnerability was considered, it could
be classified in multiple ways. Crandall and Oliveira proposed a
view of vulnerabilities as fractures in the interpretation of informa-
tion as it flows across boundaries of abstraction [37].

There are also discussions about the theoretical and computational
science of exploit techniques and proposals for explicit parsing and
normalization of inputs [38–40]. Bratus et al. [38] discussed the
view that the theoretical language aspects of computer science lie
at the heart of practical computer security problems, especially ex-
ploitable vulnerabilities. Samuel and Erlingsson [40] proposed in-
put normalization via parsing as an effective way to prevent vulner-
abilities that allow attackers to break out of data contexts.

Researchers have also studied vulnerability trends. Browne
et al [41] determined that the rates at which incidents were re-
ported to CERT could be mathematically modeled. Gopalakrishna
and Spafford [42] analyzed software vulnerabilities in five criti-
cal software artifacts using information from public vulnerability
databases to predict trends. Alhazmi et al [43] presented a vulnera-
bility discovery model to predict long and short term vulnerabilities
for several major operating systems. Anbalagan and Vouk [44] ana-
lyzed and classified thousands of vulnerabilities from OSVDB [20]

and discovered a relationship between vulnerabilities and exploits.
Wu et al [45] performed an ontology-guided analysis of vulnera-
bilities and studied how semantic templates can be leveraged to
identify further information and trends. Zhang et al [46] analyzed
vulnerabilities from the NVD database using machine learning to
discover the time to the next vulnerability for a given software ap-
plication.

There are also studies on developer’s practices. Meneely and
Williams [47] studied developers collaboration and unfocused con-
tributions into developer activity metrics and statistically correlated
them. Schryen [48] analyzed the patching behavior of software
vendors of open-source and closed-source software, and found that
the policy of a particular software vendor is the most influential
factor on patching behavior.

The difference between these works and the proposed paradigm
is that it leverages human psychology to understand the nature of
software vulnerabilities.

5.2 Human Factors in Software Development
Using human factors in technology research is not a new concept.
Curtis, Krasner, and Iscoe [49] studied the software development
processes by interviewing programmers from 17 large software de-
velopment projects. They tried to understand the effect of behav-
ioral and cognitive processes in software productivity. They be-
lieved software quality in general could be improved by attacking
the problems they discovered in this exploratory research. They
summarized the study by describing the implication of their inter-
views and observations on different aspects of the software devel-
opment process, including team building, software tools and devel-
opment environment and model.

Others also recognized the role of cognition in program represen-
tation and comprehension [50], design strategies and patterns [51],
and software design [52]. These studies show the evolution of de-
sign paradigm and development tools from task-centered to human-
centered. Current software development tools are very good at pin-
pointing errors and making sensible suggestions to avoid problems
later. New derivatives are created to assist programmers. They have
helped the software development process to be less error-prone in
general. These studies paved the way for understanding secure soft-
ware development from the human viewpoint, as being proposed in
this paper.

Wurster and van Oorschot [53] argue that the security community
should conservatively view developers as the enemy and take the
security of systems out of their hands. This is achieved by devel-
oping security technical solutions instead of assuming developers
will be educated to do the right thing. The paradigm proposed here
is complementary to the author’s claim by proposing to increase
the probability of developers thinking about security issues through
cueing on-the-spot.

5.3 Information Security Perception
The concept of blind spots is intimately related to the way develop-
ers perceive security and the risk of software vulnerabilities while
programming. Risk is the probability that an undesirable event will
occur and it has been shown to have the potential to influence peo-
ple’s attitudes and attention [54]. There is broad research address-
ing risk and information perception of non-expert Internet users.

Asghapours et al [55] advocate the use of mental models of com-

58

puter security risks for improvement of risk communication to non-
expert end users. Based on the literature, the authors leveraged five
mental models, as simplified internal concepts of how something
works in reality: Physical Safety, Medical Infections, Criminal Be-
havior, Warfare, and Economic Failures. Their user study showed
that people’s mental models of security risks correlated with their
level of expertise.

Garg and Camp [56] adopted the classic Fischhoff’s canonical nine
dimensional model of offline risk perception [57] to better under-
stand online risk perceptions. A user study was performed to iden-
tify the dimensions of online risk perceptions of end users. Results
obtained for online risks differed from the ones obtained for offline
risks. In addition, the severity of a risk was the biggest factor in
shaping risk perception.

In the area of decision-making Garg and Camp [58] identified sys-
tematic errors by decision-makers leveraging heuristics as a way to
improve security designs for risk averse people.

All these studies consider information security perception from the
non-expert end user viewpoint and not from developers’ perspec-
tive.

5.4 Economics of Computer Security
One of the arguments of this paper is that due to people’s work-
ing memory limitations, basic functionality and performance is-
sues leave very little room for security thinking while developing
software. Psychological research [12] also documents that under
time pressure, people tend to use even simpler heuristics requiring
less integration of information. This hypothesis corroborates many
studies in the area of economics of computer security that argue
that developers have “perverse” incentives [59] to develop insecure
software, such as time-to-market pressures and lack of accountabil-
ity.

There are several studies that have investigated issues related to the
economics of computer security. In a classic paper, Anderson [59]
discusses how society provides very high economic incentives for
a market of insecure software. The party who is in a position to
protect a system is not the party that suffers the results of a se-
curity failure. The computer software and systems market selects
software and systems that reach the user quickly and as feature-
rich as possible. In a similar fashion, Herley [60] argues that the
user’s rejection of security advice is rational economically. On one
one hand, the received advice offers users protection from the direct
costs of attacks, such as identity theft. On the other hand, it burdens
the users with indirect costs in the form of cognitive effort, such as
time invested trying to understand complex security tips. Similarly,
Herley argues [61] that “more is not the answer”, but that security
advice should be effort neutral.

5.5 Diagnosis Tools
Rather than finding the generic root cause of software vulnera-
bilities, the majority of today’s diagnosis tools target at domain-
specific problems by applying application-specific techniques.
There are several categories of these tools.

The work in validation of API behaviors for vulnerability detection
include runtime verification [62], logic formalisms [63] and model-
based testing [64]. These techniques are effective at finding bugs
that persist in an API, but many of them are difficult or impractical
to use.

Subtle and complicated vulnerabilities in software systems depend
on specific sequences of APIs execution. Some work has fo-
cused on centralizing distributed processes in order to avoid the
asynchronous communication and to properly apply application-
specific model checking [65].

Several tools have been developed for fault or vulnerability detec-
tion that use machine learning algorithms [66]. Supervised ma-
chine learning (ML) derives a signature from application traces or
network packet traces [67].

6. WORKSHOP DISCUSSION
In the lively discussion of this paper during the workshop, Bob
Blakley noted that the psychological difficulty of choice is what
Alvin Toffler called “future shock". Abe Singer suggested that
Google could try giving developers the right answers to secure
code, as developers heavily rely on Google results while coding.
He also noted that API names and documentation are actively mis-
leading. Ben Edwards argued that developers are responsible for
not checking security issues, but there is also a testing failure in-
volved.

Nathaniel Husted thinks that there is a chain of custody issue
that holds API developers responsible for security issues involving
the API. Jeremy Epstein argued that the threat environment might
change between time of API design and use. Sean Peisert wonders
whether developers might be “lazy" or afraid of what they might
find in code if they examine it further. Michael Locasto pointed
out that the goal of using an API is to reduce developers’ workload
via abstraction. Thus, developers shouldn’t have to break out of the
idea of encapsulation and examine API issues further.

Konstantin Beznosov suggested looking at work on use of check-
lists in healthcare as a source of techniques for helping developers
making good decisions. Tom Longstaff noted that the decision-
making literature assumes developers know where the blind spots
are. Richard Ford stressed the importance of cueing reinforcement
and Anil Somayaji suggested employing cues like a game process
to increase cueing effectiveness.

Jeremy Epstein also mentioned that people used to write code
which was designed to suppress warnings without fixing the as-
sociated problems. He gave the example of a Debian developer
who created a vulnerability in OpenSSL by making a modification
to suppress a warning.

Mary Ellen Zurko wonders which one is harder: finding blind spots
or cueing developers. Paul van Oorschot thinks that there is also an
incentive problem, as developers are rewarded based on productiv-
ity.

Wolter Pieters thinks that the authors are actually proposing to
change the content of developer’s heuristics to include security
information, which the authors agree. Andreas Poller questioned
whether the blind spots are simply lack of knowledge, or develop-
ers know that they are in a context where the security knowledge
applies, but they are not incentivized to use this knowledge. Tom
Longstaff thinks that the authors need to consider the demographics
and education level of developers taking puzzles, as it will change
the set of blind spots discovered. Ben Edwards thinks that the blind
spots are not programming language agnostic. Finally, Steve Myers
suggests a clear separation of blind spot discovery (crowdsourcing)
and cueing developers.

59

7. CONCLUSIONS
This paper re-evaluated the root cause of software vulnerabilities
as blind spots in the heuristics developers employ during their ev-
eryday decision-making processes. Evolution has hardwired hu-
mans for shortcut heuristic-based decision-making processes as an
adaptive defense against their short working memories. Heuristics
require less cognitive effort to solve problems because they do not
use all information available, but they can lead to serious errors in
judgment.

This paper’s thesis is that as vulnerabilities lie in hidden cases and
uncommon information flows, security thinking is not included in
developers’ heuristics. Then, programming paths with hidden as-
sumptions become blind spots. The paper also proposed a method-
ology for capturing and understanding security-related blind spots
in APIs that leverages this paradigm. This methodology involves
the creation of cognitive puzzles exercising potential blind spots,
which are presented to a large number of developers.

Considering vulnerabilities from a Psychology viewpoint is not
well explored and the authors believe that this hypothesis helps ex-
plain why the number of vulnerabilities keeps increasing, and why
well-understood vulnerabilities are still commonly reported.

Acknowledgments

We would like to thank the NSPW anonymous reviewers, our
shepherd, Julie Ard, and all the workshop attendees for valuable
feedback. Justin Cappos is supported under grant CNS-1223588.
Daniela Oliveira is supported under grant CNS-1149730.

8. REFERENCES
[1] “Symantec - Internet Security Threat Report

(http://www.symantec.com/content/en/us/
enterprise/other_resources/b-istr_main_
report_v19_21291018.en-us.pdf).”

[2] B. K. Marshall, “PasswordResearch.com Authentication
News: Passwords Found in the Wild for January 2013.”
http:
//blog.passwordresearch.com/2013/02/
passwords-found-in-wild-for-january-2013.
html.

[3] D. Kahneman and A. Tversky, “On the Reality of Cognitive
Illusions,” Psychological Review, pp. 582–591, 1996.

[4] G. Gigerenzer, R. Hertwig, and T. Pachir, Heuristics: The
Foundations of Adaptive Behavior. Oxford University Press,
2011.

[5] B. Schwartz, “The Tyranny of Choice,” Scientific American,
pp. 71–75, 2004.

[6] S. Botti and S. S. Iyengar, “The Dark Side of Choice: When
Choice Impairs Social Welfare,” American Marketing
Association, pp. 24–38, 2006.

[7] R. E. Stake, Qualitative Research: Studying How Things
Work. The Guilford Press, 2010.

[8] I. W. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques, Second Edition. Morgan
Kaufmann, 2005.

[9] W. Thorngate, “Efficient Decision Heuristics,” Behavioral
Science, vol. 25, no. 3, pp. 219–225, 1980.

[10] J. W. Payne, J. R. Bettman, and E. J. Johnson, The Adaptive
Decision Maker. Cambridge University Press, 1993.

[11] G. K. Zipf, Human Behavior and The Principle of Least

Effort. Addison-Wesley, 1949.
[12] J. Rieskamp and U. Hoffrage, Simple Heuristics that Make

Us Smart. Oxford University Press, 1999.
[13] “Openssh 5.1.” Accessed May 2nd, 2012

http://www.openssh.com/txt/release-5.1.
[14] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on

passwords using time-space tradeoff,” ACM CCS, 2005.
[15] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,

A. Grier, P. Wagle, Q. Zhang, and H. Hinton, “StackGuard:
Automatic adaptive detection and prevention of
buffer-overflow attacks,” in USENIX Security, pp. 63–78, Jan
1998.

[16] W. S. McPhee, “Operating System Integrity in OS/VS2,”
IBM Systems Journal, vol. 13, no. 3, pp. 230–252, 1974.

[17] M. Pinzger, N. Nagappan, and B. Murphy, “Can
Developer-Module Networks Predict Failures?,” ACM
SIGSOFT International Symposium on Foundations of
software engineering, pp. 2–12, 2008.

[18] “SecurityFocus (http://www.securityfocus.com/).”
[19] “National Vulnerability Database

(http://nvd.nist.gov/home.cfm).”
[20] “Open Source Vulnerability Database

(http://www.osvdb.org/).”
[21] B. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy,

A. Natarajan, and J. Steidl, “Fuzz revisited: A
re-examination of the reliability of UNIX utilities and
services,” tech. rep., 1995.

[22] J. C. King, “Symbolic execution and program testing,”
Commun. ACM, vol. 19, no. 7, pp. 385–394, 1976.

[23] “Urllib and validation of server certificate.” http:
//stackoverflow.com/questions/6648952/
urllib-and-validation-of-server-certificate.

[24] F. Gravetter and L. Wallnau, Statistics for the Behavioral
Sciences. Wadsworth/Thomson Learning, 8th ed., 2009.

[25] I. T. Jollife, Principal Component Analysis. Springer, 2002.
[26] I. Beschastnikh, “Inferring networked system models from

behavior traces,” in Proceedings of the 2012 ACM conference
on CoNEXT student workshop, pp. 13–14, ACM, 2012.

[27] E. Eskin, W. Lee, and S. J. Stolfo, “Modeling system calls for
intrusion detection with dynamic window sizes,” in DARPA
Information Survivability Conference & Exposition II, 2001.
DISCEX’01. Proceedings, vol. 1, pp. 165–175, IEEE, 2001.

[28] A. Ulrich and A. Petrenko, “Reverse engineering models
from traces to validate distributed systems–an industrial case
study,” in Model Driven Architecture-Foundations and
Applications, pp. 184–193, Springer, 2007.

[29] J. Yang, C. Sar, and D. Engler, “Explode: a lightweight,
general system for finding serious storage system errors,” in
Proceedings of the 7th symposium on Operating systems
design and implementation, OSDI ’06, (Berkeley, CA,
USA), pp. 131–146, USENIX Association, 2006.

[30] E. H. Ruspini, “A new approach to clustering,” Information
and control, vol. 15, no. 1, pp. 22–32, 1969.

[31] “Fuzzy set.”
http://en.wikipedia.org/wiki/Fuzzy_set.

[32] R. P. Abbot, J. S. Chin, J. E. Donnelley, W. L. Konigsford,
and D. A. Webb, “Security Analysis and Enhancements of
Computer Operating Systems,” NBSIR 76-1041, Institute for
Computer Sciences and Technology, National Bureau of
Standards, 1976.

[33] R. B. II and D. Hollingsworth, “Protection Analysis Project

60

Final Report,” ISI/RR-78-13, DTIC AD A056816,
USC/Information Sciences Institute, 1978.

[34] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S.
Choi, “A Taxonomy of Computer Program Security Flaws,”
ACM Computing Surveys, vol. 26, no. 3, 1994.

[35] T. Aslam, “A Taxonomy of Security Faults in the UNIX
Operating System,” 1995.

[36] M. Bishop and D. Bailey, “A Critical Analysis of
Vulnerability Taxonomies,” Technical Report CSE-96-11,
University of California at Davis, 1996.

[37] J. Crandall and D. Oliveira, “Holographic Vulnerability
Studies: Vulnerabilities as Fractures in Interpretation as
Information Flows Across Abstraction Boundaries,” New
Security Paradigms Workshop (NSPW), 2012.

[38] S. Bratus, M. E. Locasto, M. L. Patterson, L. Sassaman, and
A. Shubina, “Exploit Programming: From Buffer Overflows
to “Weird Machines” and Theory of Computation.” USENIX
;login, December 2011.

[39] W. Pieters and L. Consoli, “Vulnerabilities As Monsters: The
Cultural Foundations of Computer Security,” Proceedings of
the European Computing and Philosophy Conference
(E-CAP), 2006.

[40] M. Samuel and U. Erlingsson, “Let’s Parse to Prevent
pwnage (invited position paper),” in Proceedings of the 5th
USENIX conference on Large-Scale Exploits and Emergent
Threats, LEET’12, (Berkeley, CA, USA), pp. 3–3, USENIX
Association, 2012.

[41] H. K. Browne, W. A. Arbaugh, J. McHugh, and W. L. Fithen,
“A trend analysis of exploitations,” IEEE Symposium on
Security and Privacy, 2001.

[42] R. Gopalakrishna and E. H. Spafford, “A Trend Analysis of
Vulnerabilities,” CERIAS Tech Report 2005-05, 2005.

[43] O. H. Alhazmi and Y. K. Malaiya, “Prediction capabilities of
vulnerability discovery models,” IEEE Reliability and
Maintainability Symposium (RAMS), pp. 86–91, 2006.

[44] O. H. Alhazmi and Y. K. Malaiya, “Towards a unifying
approach in understanding security problems,” IEEE
International Conference on Software Reliability
Engineering (ISSRE), pp. 136–145, 2009.

[45] Y. Wu, R. A. Gandhi, and H. Siy, “Using Semantic
Templates to Study Vulnerabilities Recorded in Large
Software Repositories,” ICSE Workshop on Software
Engineering for Secure Systems, 2010.

[46] S. Zhang, D. Caragea, and X. Ou, “An Empirical Study on
using the National Vulnerability Database to Predict
Software Vulnerabilities,” International Conference on
Database and Expert Systems Applications (DEXA), 2011.

[47] A. Meneely and L. Williams, “Secure Open Source
Collaboration: An Empirical Study of Linus’ Law,” ACM
CCS, pp. 453–462, 2009.

[48] G. Schryen, “A comprehensive and comparative analysis of
the patching behavior of open source and closed source
software vendors,” IMF, 2009.

[49] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the
software design process for large systems,” Communications
of the ACM, vol. 31, no. 11, pp. 1268–1287, 1988.

[50] J.-M. Hoc, “Role of mental representation in learning a
programming language,” International Journal of
Man-Machine Studies, vol. 9, no. 1, pp. 87–105, 1977.

[51] A. Chatzigeorgiou, N. Tsantalis, and I. Deligiannis, “An
empirical study on students ability to comprehend design

patterns,” Computers & Education, vol. 51, no. 3,
pp. 1007–1016, 2008.

[52] R. Jeffries, A. A. Turner, P. G. Polson, and M. E. Atwood,
“The processes involved in designing software,” Cognitive
skills and their acquisition, pp. 255–283, 1981.

[53] G. Wurster and P. C. van Oorschot, “The Developer is the
Enemy,” New Security Paradigms Workshop (NSPW),
pp. 89–97, 2008.

[54] M. S. Wogalter, D. DeJoy, and K. R. Laughery, Warnings
and Risk Communication . CRC Press, 1999.

[55] F. Asgapour, D. Liu, and L. J. Camp, “Mental Models of
Computer Security Risks,” Financial Cryptography and
Data Security Lecture Notes in Computer Science, vol. 4886,
pp. 367–377, 2007.

[56] V. Garg and L. J. Camp, “End User Perception of Online
Risk Under Uncertainty,” Hawaii International Conference
On System Sciences, vol. 4886, 2012.

[57] B. Fischhoff, P. Slovic, S. Lichtenstein, and B. C.
Stephen Read, “How Safe is Safe Enough? A Osychometric
Study of Attitudes Towards Technological Risks and
Benefits,” Policy Sciences, vol. 9, no. 2, 1978.

[58] V. Garg and L. J. Camp, “Heuristics and biases: Implications
for security,” IEEE Technology & Society, March 2013.

[59] R. Anderson, “Why Information Security is Hard - An
Economic Perspective,” ACSAC, 2001.

[60] C. Herley, “So Long, and No Thanks for the Externalities:
the Rational Rejection of Security Advice by Users,” New
Security Paradigms Workshop (NSPW), 2009.

[61] C. Herley, “More is Not the Answer,” IEEE Security &
Privacy magazine, 2014.

[62] S. Park, S. Lu, and Y. Zhou, “Ctrigger: exposing atomicity
violation bugs from their hiding places,” in Proceedings of
the 14th international conference on Architectural support
for programming languages and operating systems, ASPLOS
’09, (New York, NY, USA), pp. 25–36, ACM, 2009.

[63] H. Barringer, A. Goldberg, K. Havelund, and K. Sen,
“Rule-based runtime verification,” in VMCAI, pp. 44–57,
2004.

[64] F. Dadeau, A. Kermadec, and R. Tissot, “Combining
scenario- and model-based testing to ensure posix
compliance,” in Proceedings of the 1st international
conference on Abstract State Machines, B and Z, ABZ ’08,
(Berlin, Heidelberg), pp. 153–166, Springer-Verlag, 2008.

[65] C. Artho and P.-L. Garoche, “Accurate centralization for
applying model checking on networked applications,” in
Proceedings of the 21st IEEE/ACM International conference
on Automated Software Engineering (ASE), 2006.

[66] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran, V. N.
Padmanabhan, and G. M. Voelker, “Netprints: diagnosing
home network misconfigurations using shared knowledge,”
in NSDI, 2009.

[67] M. Attariyan and J. Flinn, “Using causality to diagnose
configuration bugs,” in USENIX 2008 Annual Technical
Conference on Annual Technical Conference (ATC), 2008.

61

